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Comparing Hg;w and Tl the magnetic
moment of Hg,gs should be that of 2
neutron, while that of Tl is due to a proton.
I{ now the neutroun is thought of as a sphere

of positive electrict®y imbedded 1n a sphere !

of negative electricity which is very much
larger, the entire structure rotating with
one angular velocity., and the moment of
the whole being § 2,/ 2, its magnetic moment
will be of the same order as that of the
proton, and the approxunate equality of
the g(l) factors of Hg9o and Ti beeome
intelligible.

Next considering Tl and Pb, the term
corresponding to the spin 1 in the case of

Pb may be *Dy or *P or *Py, so that the ¢

factor may be D or §/3 or 2/3. Ii the term
18 taken to be “P, the ratio of the g factors
of T1l and Pb comes out to be (magnetic
moment of the proton) / (one-third of mag-
netic moment of the neutron;, that is 4, if
the magnetic moment of the neutron is
assumed to be 0-75 times that of the proton
on the basis of our previous comparison

S—

l

- of Hgyoy and T

The value deduced by
McLennan is between 3:7 and 3 (loc. eil.

- p. 666), thus agreeing with the theoretical

' value,

To interpret the ratio befween the g¢(I)

- factors of T1 and Bi deduced by McLennan

(from 3:2 to 1-4; loc. ¢it., p. 665) we
have to consider the spin 4% of the Bi
nucleus as due to a *G, term with the
spin of the proton oppositely directed.
Then the magnetic moment of the Bj
nucleus =3 X 5 X § —1 =% so that its ¢ fac-
tor £+ X § =+4. THence the ratio of g(I)y to
gD = 18/7 = 2-6. In thiscase the numerical
agreement 18 not so good as before, but
considering the uncertainties in the value
deduced by McLennan, as also in the ratio
between the magnetic moments of the
proton and the neutron, exact numerical
coincidence cannot be expected. Considera-
tions of a similar nature may be expected
to lead to an understanding of the extremely

small value of the ¢(I) factor in the case of
elements like chlorine.

A Note on the Special Theory of Relativity.
By Prof. A. C. Banerji, M.A., M.Sc., 1.E.8., Allahabad University.

IT has been pointed out (Current Science,

1, 160, 1932) that if there are two
particles A and B of rest masses m, and m,
{with respect to each other) moving with a
relative velocity v, the total mass of the
system can be calculated in two ditferent
ways. If m, be assumed to be at rest then
the total mass of the system is found to be
Ma

M, -+ —==—== Where ¢ 13 the velocity of
(%
A 15
light. On the other hand, if m, is supposed

to be at rest the total mass of the system
Nt

becomes m, —=——==, Clearly, these two
4/ 11—

o
expressiong for the total mass are different.

In the first case the total energy of the
system apart from the interaction energy

Ny oF

would become m,¢* +

Le, Mm,et 4+ m et -+ F omo”

neglecting terms of higher order of small
quantities. These two expressions for energy
are different.

We also see that according to the ob-
server A the total linear momentum of the

T at)

system is ’\/ —— and according to the
11—

observer B it 1s These two ex-

pressions are evidently numerically different.

If there are two or more observers we can
show more generally that the total energy
of a system of particles becomes different

(which, if any, will be the same in both the | when measured by different observers: and

cases) 1s . the law of conservation is not true in this
M, c? 4 Mt = i.6., m C® + m,c* -+ } m,p* | Sense, and the total energy is not an absq-
12 " lute property of the system. However, 1t

o=

i3 quite possible that for each particular
observer the total energy may remain con-
stant throughout the motion, but it is no
new principle. The above remarks apply

neglecting terms of higher order of gmall
gquantifies. In the second case the total
energy apart from the interaction energy
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equally well to the case of total linear
momentum.

We shall see presently that the principle
of relativity creates another difficulty to
which attention has not been drawn hefore,
viz., failure of the concept of the centre of
mass as a definite point. It 18 necessary to
call attention to this fact, as when dealing
with a number of particles, the concept of
the centre of mass has sometimes been
used.

Let us take, as before, two particles A
and B having the rest masses m, and i,
and let them start moving with respect to
each other with the velocity ».

Let B’ be the point which is at rest with
respect to A but which momentarily coin-
cides with B at the instant { measured by A.
Let AB be egual o r as measured by A.
Now, for the observer at A the problem is
reduced to a statical case of finding out
the centre of mass of two masses m, and

——=—=Z2—— at A and B’ respectively. Let

the centre of mass be G, as found by A.
Then according to the measurement of A

ol
AG, = —m=—s / ‘:m A+ .
(& ?}"
AV 1-% ) V 12
1z} ] 1 M, Nl By 3 ]Bc ine
T omyAme O (my 4 ma)c? (neglecting
small quantities of higher orders).

Mol :

S My vlr "11eg-
(1, -+ Pa)e? \

lecting small quantities of higher orders).

Similarly, take A’ to be the poimnt which is
at rest, with respect to B but which momen-
tarily coincides with A at the instant ¢
measured by B. In order that BA’ may be
nuinerically equal to AB’ we have to take
t and {’ suitably related.

We have AB =a 4 #!, i.¢. when t =0 as
measured by A the dlst&ncu between the
particles was ‘e’ according to A. J'urther,
BA = — (b4 vt'), i.e. whent =0 as mea-
sured by B the distance between the particles
was { ~—b) according to B 80 that in order
that (AB) = — (BA’) (as measured by A
and B respectively} we get a4 vl == b - of

BG, —~— | T

[m‘| 1 i

P.,f—-t:i'{::é] We see that a and b
depend upon the initial conditions of the
problem.

Now for the observer at B the problem is
reduced to a statical case of finding the

3

Tit .
centre of mass of masses )\/__* ’ == and m,
i

O

(-2
at A’ and B respectively. Let the centre of

mass be G, a8 found by B. Then according
to the measurements of B

-—-ml?*
BGE""" T m} A 1!3.]
1--. a 1—

myr a1 Ny ey vy
o m'l —+ My 2 (my A~ wi2)c?

(neglecting small quantities of higher order) ;

' mar g nyn vir
also A'G, My - B 2 (my 4 mp)c? (neg

lecting small quantities of higher order).

Expressions for AG, and A'G, are dil-
ferent.

We know that if two systems of reference
A and B move with a relative velocity o
then to an observer on A the unit of length
of A along the Iline of relative motion

appears to be in the rafio /\/ 1—..}?—2 1 to

that of B while to an observer on B the
unit of length of B along the line of relative

| motion appears to be in the ratio 4/ 1—--;_- : 1

to that of A. To the observer A the dis-
tance A'G, will appear to be

m-lmﬁ 'i.a""
(721, ,L*md ¢?
\/ 1~ 5%

(neglecting small qua;ntztws

of higher order).

Even for observer A, G, and G, are dif-
ferent points. The ooncept that the centre
of mass i8 a definite point with respect to
any configuration of particles fatls.

Now m, and m, are the masses of two
particles A and B when they are relatively
at rest with respect to each other. Rdding-
ton calls them ‘¢ proper masses ” or **in-
variant masses  and assumes that they
have abgolute inertial propertiocs and remain
unattered throughount the vicissitudes of
their history (Kddington's Mathematical
Theory of Relativily, p. 30). Let us exantine
Eddington's assumption a little more eare-
fully. There are two possibilities ;—

(@) The rest masses m, and m» of any two
particles A and B with vespect fo each other
have the szame values in presence of other
bodies whatever be their common relative
velocity with respect to each of these bodios,

¥
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(b} The values of the rest masses of A and
B with respect to each other may change in
the presence of other bodies by amounts
which depend on the magnitude of their
comimon relative velocity with respect to
cach of the other bodies.

. Let uy now examine the first possibility.
Let there be three wparticles A, B and C.
According to the hypothesis the rest masses
of A and B between themselves remain the
same irrespective of the presence of the third
body C. Similarly, the rest masses of the
particles A and C between themselves remain
the same in spite of the third body B. Now
let three bodies A, B and C be relatively at
rest with one another and their rest masses
with respect to one another be m_, m, and
m,. According to the hjrpothems, the rest
masses m_and m, between A and B have not
altered due to C and also the rest masses m,
and m, between A and O are not altered due
to B. If there is any other particle D we
find that the rest masses between A and D
are m_and m_ _irrespective of the presence of
other bodies. Do it follows that m, is an
absolute property of thie particle A if the
first possibility is true. Let us see if this is
borne out by facts.

Let M,;, Ms, Mj, etc. be the masses of the
particles A B, C, ete. and z, ¢, ©,, ete. be
their relative velamtles a8 me&sured by an
observer S and let M, M’,, M',, etc. be the
masses of the same partleles and o M U,
ete. be their velocities as measured by
another observer . Let u# be the velocity

of 8 with respect to 8’. Then

M, A 18 =, g 1T

c2

?

as each of them is equal to m, in virtue
of the first possibility. We have similar
relations for other particles. Therefore we

have
SE

ZM, v, =2M v

1 an ﬂ
(=
Vy (v'; —u)
INOW —_— ; ]_'—_-‘ 2
'2?1 = v 'H" ?}‘!1 =

(see p. 31, M athematwal T heory of
Relativ ty, Eddington).

S0 we get
, _ IMhY,  uZM,
2: M1 'Ul E— v uﬂ v-ﬂ—“—-—' -—ﬂ—!-"—z—a—w b e (A)
1—% 1— %

Similarly we alﬂo get
M v, == T M,

»\/{_._E:

Eddington has assumed, it appears rathel
arbitrarily, that the equation (A) is satisfied
and has then come to the conclusion that
the rest masses m,, m,, etc. are absolute
properties of the particles. There does not

seem to be any justification for such an
assumption.

Clearly 2’ M’ 2", is not equal to X M, v
When there are two or more observers total
iinear momentum of a systemn of particles
becomes different for different observers, and
the law of conservation is not true in this
sense, and the total linear momentum is not
an absolute property of a system of
particles or bodies.

From (A; and {B) it 1s evident that if for
eaclh particular observer the total mass is
conserved, then for him total linear momen-
tum will also be conserved.

There 15 one serious difficulty, when we
tatk of any conservation theorem in connec-
tion with a number of particles in the theory
of Relativity, as we have to bring in forces
existing between them. This involves the
idea of the distance, and the quantity
giving the total energy or linear momentum
becomes ambiguous. Henece il appears that
we cannot talk of any conservation theory
existing between a number of particles in
the theory of Relativity.

Under the second possibility the rest
masgses are clearly not the absolute properties
of the particles. Moreover, if m, is the
rest mass of A with respect to B, then m,
would not generalty be the rest mass of A
with respect to another particle C. It would
be some other quantity m',. Iach observer
has his own particular world and measures
the masses of the particles, their total
energy and linear momentum in his own
particular way. Unless some absolute
property of each particle independent ot the
observer is conserved, there cannot be any
correlation between the above quantifies
measured by different ohservers. Without
any such correlation between measurements
made by different observers the theory of
Relativity cannot make much progress in
explaining natural phenomena. S0 we see
that some such postulate as therest mass of
a particle remains invariant throughout the
vicissitudes of its history has become

IRV

. (B)

| necessary.



