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This article provides a brief summary of the well-
known stable matching problem from the point of 
view of linear programming. One contribution is an 
interpretation of the Gale–Shapley proposal algorithm 
as a dual ascent algorithm for an appropriate linear 
programming formulation of the stable matching 
problem. 
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Introduction 

THE stable matching problem was introduced by Gale and 
Shapley1 as a model of how to assign students to col-
leges. It is a classic that has inspired a flood of papers 
exploring generalizations, variations and applications. 
For a comprehensive account of these, see Roth and  
Sotomayor2 as well as Roth3. 
 A stable matching is a matching in a bipartite graph 
that satisfies additional conditions. Just as we have a lin-
ear inequality description of the convex hull of all match-
ings in a bipartite graph, it is natural to ask if such a 
description is possible for the convex hull of stable 
matchings. Vande Vate4 provided one. His proof (as do 
subsequent ones) assumes the existence of a stable 
matching. Existence was established by Gale and 
Shapley1 via their proposal algorithm. What has nagged 
me is that one should be able to obtain existence of a sta-
ble matching directly from Vande Vate’s characterization 
of the convex hull of stable matchings. This article does 
just that. I associate a linear program with the linear ine-
quality description of the convex hull of stable matchings. I 
then show that an appropriate dual ascent algorithm for this 
linear program produces a stable matching. Indeed, the dual 
ascent algorithm resembles the Gale–Shapley proposal  
algorithm; which I find satisfying. 
 I begin by introducing notation and stating the stable 
matching problem. Subsequently, I review the proposal 
algorithm and Vand Vate’s characterization. This will 
make the article self-contained. 

Stable matching problem 

Given is a set M of men and a set W of women. Each 
m ∈ M has a strict preference ordering over the women in 

W and each w ∈ W has a strict preference ordering over 
the men in M. The preference ordering of agent i is  
denoted ni and x ni y means agent i ranks x above y. One 
can accommodate the possibility of an agent choosing to 
remain single by including for each man (woman) a 
dummy woman (man) in the set W(M) that corresponds to 
being single (or matched with oneself). The dummy 
woman associated with man m will rank m first and all 
other men below him. All men other than m will rank this 
dummy woman (in any order) below their corresponding 
dummy woman. With this construction we can assume 
|M| = |W|. 
 A matching is an assignment of men to women such 
that each man is assigned or paired with exactly one 
woman and no woman is assigned to more than one man. 
Denote a matching by μ. The woman matched to man m 
in the matching μ is denoted μ(m). Similarly, μ(w) is the 
man matched to woman w. 
 A matching μ is said to be blocked by the pair (m, w′) if 
 

 1. μ(m) = w, 
 

 2. μ(m′) = w′, 
 

 3. And w′ nm w and m nw′ m′. 
 
The pair (m, w′) is called a blocking pair. A matching that 
has no blocking pairs is called stable. 
 
Example 1. The preference orderings of men and 
women are shown in the table below. 
 
nm1 nm2 nm3 nw1 nw2 nw3 
w2 w1 w1 m1 m3 m1 
w1 w3 w2 m3 m1 m3 
w3 w2 w3 m2 m2 m2 

 

Consider the matching {(m1, w1), (m2, w2), (m3, w3)}. It is 
not stable because (m1, w2) is a blocking pair. The match-
ing {(m1, w1), (m3, w2), (m2, w3)}, however, is stable. 
 
The presence of dummy men and women means that no 
stable matching (if it exists) forces an agent into a match 
with a partner whom he/she ranks below being single. 
That agent and their corresponding dummy on the other 
side would form a blocking pair. 

The proposal algorithm 

It is not at all obvious that a stable matching exists. The 
main result of Gale and Shapley1 is that a stable matching 
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always exists. The proof is constructive via an elegant  
algorithm called the deferred acceptance algorithm. 

Deferred acceptance algorithm (male-propose  
version) 

1. First, each man proposes to his top-ranked choice. 
2. Next, each woman who has received at least two pro-

posals keeps (tentatively) her top-ranked proposal and 
rejects the rest. 

3. Then, each man who has been rejected, proposes to 
his top-ranked choice amongst the women who have 
not rejected him. 

4. Again each woman who has at least two proposals  
(including the ones kept from previous rounds), keeps 
her top-ranked proposal and rejects the rest. 

5. The process repeats until no man has a woman to pro-
pose to, or each woman has at most one proposal. 

 
Theorem 1. The male-propose deferred acceptance al-
gorithm terminates in a stable matching. 
 
Proof. When it terminates, it clearly does so in a match-
ing. Suppose the matching is blocked by the pair (m1, w1) 
with m1 matched to w2, say, and w1 matched to m2. Since 
(m1, w1) is blocking and w1 nm1 w2, in the proposal algo-
rithm, m1 would have proposed to w1 before w2. Also, m1 
was not matched with w1 by the algorithm, because w1  
received a proposal from a man that she ranked higher 
than m1. As the algorithm matches her to m2 it follows 
that m2 nw1 m1. This contradicts the fact that (m1, w1) is a 
blocking pair.  
 
One could describe a deferred acceptance algorithm 
where the females propose and the outcome would also 
be a stable matching possibly different from the one  
returned using the male-propose deferred acceptance al-
gorithm. Thus, not only is a stable matching guaranteed 
to exist, but there can be more than one. If there can be 
more than one stable matching, is there a reason to prefer 
one to another? 
 A matching μ is male-optimal if there is no stable 
matching ν such that ν(m) nm μ(m) or ν(m) = μ(m) for all 
m with ν( j) nj μ( j) for at least one j ∈ M. Similarly  
define female-optimal. 
 
Theorem 2. The stable matching produced by the male-
propose deferred acceptance algorithm is male-optimal. 
 
Proof. Let μ be the matching returned by the male-
propose deferred acceptance algorithm. Suppose μ is not 
male optimal. Then, there is a stable matching ν such that 
ν (m) nm μ(m) or ν (m) = μ(m) for all m with ν ( j) nj μ ( j) 
for at least one j ∈ M. Therefore, in the application of the 
proposal algorithm there must be an iteration where some 
man j proposes to ν ( j) before μ( j) since ν ( j) nj μ( j) and 

is rejected by woman ν ( j). Consider the first such itera-
tion. Since woman ν ( j) rejects j, she must have received 
a proposal from a man i she prefers to man j. Since this is 
the first iteration at which a male is rejected by his part-
ner under ν, it follows that man i ranks woman ν ( j) 
higher than ν (i). Summarizing, iν( j) j and ν ( j) ni ν (i), 
implying that ν is not stable, a contradiction.  
 
You can replace the word ‘male’ by the word ‘female’ in 
the statement of the theorem. There does not always exist 
a stable matching that is simultaneously optimal for the 
males and females. 

The convex hull of stable matchings 

Vande Vate4 identified a collection of linear inequalities 
that described the convex hull of stable matchings. I will 
describe these inequalities and show using an elegant 
rounding argument of Teo and Sethurman5 that they  
describe the convex hull of stable matchings. 
 For each man m and woman w, let xmw = 1, if man m is 
matched with woman w and 0 otherwise. Then, every sta-
ble matching must satisfy the following 
 
 1mw

w W
x

∈
=∑  ∀m ∈ M, (1) 

 

 1 ,mw
m M

x w W
∈

= ∀ ∈∑  (2) 

 

 1 , ,
m w

mj iw mw
j w j m

x x x m M w W+ + ≤ ∀ ∈ ∈∑ ∑
≺ ≺

 (3) 

 

 xmw ≥ 0 ∀m ∈ M, w ∈ W. (4) 
 
Let P be the polyhedron defined by eqs (1)–(4). 
 Constraints (1) and (2) ensure that each agent is 
matched with exactly one other agent of the opposite sex. 
Constraint (3) ensures stability by ruling out blocking 
pairs (call it the blocking constraint). To see why, sup-
pose ∑j\mw xmj = 1 and ∑i\wm xiw = 1. Then, man m is 
matched to a woman j that he ranks below w. Similarly, 
woman w is matched to a man she ranks below m. This 
would make the pair (m, w) a blocking pair. 
 The following lemma is from Roth et al.6. 
 
Lemma 1. Suppose P ≠ π. Let x ∈ P. Then, xmw > 0  
implies that 
 
 1.

m w

mj iw mw
j w j m

x x x+ + =∑ ∑
≺ ≺

 

 
Proof. Consider min{∑i ∑j xij

 : x ∈ P}. The dual to this 
program is 
 
 max i j ij

i M j W i M j W
α β ν

∈ ∈ ∈ ∈
+ −∑ ∑ ∑ ∑  



SPECIAL SECTION: GAME THEORY 
 

CURRENT SCIENCE, VOL. 103, NO. 9, 10 NOVEMBER 2012 1053

subject to 
 

: :
1 , ,

ij j

i j ik kj
k W k k M k i

i M j Wα β ν ν
∈ ∈

+ − − ≤ ∀ ∈ ∈∑ ∑
o n

 

 
 0 , .ijv i M j W≥ ∀ ∈ ∈  
 
Set αi = ∑j∈W νij and βj = ∑i∈M νij. Substituting this into 
the dual constraints yields 
 
 

: :
1 , ,

i j

ik kj ij
k W k j k M k i

i M j Wν ν ν
∈ ∈

+ + ≤ ∀ ∈ ∈∑ ∑
≺ ≺

 

 
Choose any x* ∈ P and set νij = x*ij . This choice of ν is 
clearly dual feasible. It has an objective function value  
of ∑i∈M ∑j∈W x*ij and so is dual optimal. The lemma now 
follows by complementary slackness.  
 
The proof below is due to Teo and Sethuraman5. 
 
Theorem 3. Suppose P ≠ π. Then, P is the convex hull 
of stable matchings. 
 
Proof. Choose any weight vector {cij}i∈M, j∈W and let 
 

 * arg max : .ij ij
i j

x c x x P
⎧ ⎫⎪ ⎪∈ ∈⎨ ⎬
⎪ ⎪⎩ ⎭
∑∑  

 
With each member of M 4 W we associate an interval  
(0, 1]. For each i ∈ M, partition the associated interval (0, 1]i 
into subintervals of length x*ij  for all j ∈ W. Arrange these 
subintervals left to right by man i’s decreasing preference 
over W. For each woman j ∈ W, partition the associated 
interval (0, 1]j into subintervals of length x*ij  for all i ∈ M. 
Arrange these subintervals left to right by woman j’s  
increasing preference over M. 
 Lemma 1 means the subinterval spanned by x*ij  in  
(0, 1]i and (0, 1]j coincides. Pick a random number U uni-
formly in (0, 1] and construct a matching in the following 
way: 
 
1. Match i ∈ M to k ∈ W, if U lies in the subinterval of 

(0, 1]i spanned by x*ik. 
2. Match j ∈ W to i ∈ M, if U lies in the subinterval of 

(0, 1]j spanned by x*ij. 
 
By Lemma 1, i ∈ M is matched to j ∈ W, iff j ∈ W is 
matched to i ∈ M. Furthermore, no two men can be 
matched to the same woman, and similarly, no two 
women can be matched to the same man. So the above 
procedure does return a feasible matching. 
 To show this matching is stable, consider man i who is 
matched to j ∈ W, but prefers k ∈ W. Then, in (0, 1]i, the 
subinterval corresponding to x*ik is to the left of the subin-
terval corresponding to x*ij . Because i ∈ M is not matched 

to k ∈ W, it means that U is to the right of the subinterval 
corresponding to x*ik in (0, 1]i. Therefore, U is to the  
left of the subinterval corresponding to x*ik in (0, 1]j. In 
other words, j ∈ W is matched to someone she prefers to 
i ∈ M. 
 Set XU

ij = 1, iff man i is matched to woman j by the ran-
domized scheme above. Then 
 

 *( ) .U U
ij ij ij ij ij ij

i M j W i M j W i M j W
E c X c E X c x

∈ ∈ ∈ ∈ ∈ ∈

⎛ ⎞
= =⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ ∑ ∑ ∑ ∑  

 
Thus, we have exhibited a probability distribution over 
stable matchings whose expected objective function value 
coincides with c ⋅ x*. It follows then, that there is a stable 
matching with objective function value c ⋅ x*.  

A dual ascent algorithm 

Theorem 2 assumes that P ≠ π. We know that P ≠ π by 
virtue of the proposal algorithm. It would be nice to  
verify P ≠ π directly from eqs (1)–(4). I do this below.  
 If woman j is man i’s first choice, set rij = n. If woman 
j is man i’s second choice, set rij = n – 1 and so on. Con-
sider 
 

 max : .mw mw
m M w M

r x x P
∈ ∈

⎧ ⎫⎪ ⎪∈⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ∑  

 
Let ν be the dual multiplier associated with the blocking 
constraints and p the dual multiplier associated with the 
constraint ∑w∈W xmw = 1 for all m. Consider the following 
Lagrangean relaxation of the optimization problem 
 

 
:

max
m

mw w mw mk
m M w W k W k w

r p ν ν
∈ ∈ ∈

⎡
− − −⎢

⎢⎣
∑ ∑ ∑

n

 

 

    
: w

km mw
k M k m

xν
∈

⎤
− ⎥

⎥⎦
∑
n

  

 
 s.t. 1 ,mw

w W
x m M

∈
= ∀ ∈∑  xmw ≥ 0 ∀(m, w). 

 

This relaxation is easy to solve. For each man m ∈ M, 
choose the woman w ∈ W that maximizes 
 
 

: :
.

m w

mw w mw mk km
k W k w k M k m

r p ν ν ν
∈ ∈

− − − −∑ ∑
n n

 

 
In case of a tie, choose the top-ranked woman. 
 Let (pt, ν t) be the value of the multipliers at the start of 
iteration t. Set (p0, ν 0) = 0. Denote by xt the optimal 
choice of x given the multipliers (pt, ν t). If x t

mw = 1, we 
will say that man m proposed to woman w. Given xt, we 
adjust (pt, ν t) by ˆˆ( , )p ν  as follows. 
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1. ˆ 0p =  throughout. 
2. At iteration t, let ˆ t

ij ijxν =  for all i, j. 
3. Set (pt+1, ν t+1) = (pt, ν t) + ˆˆ( , )p ν  = (pt, ν t) + (0, xt

ij). 

4. Set 1
: m

t t t t
mw mw mw k W k w mkr r ν ν+

∈= − − ∑ n : .
w

t
k M k m kmν∈−∑ n  

Notice that we can rewrite this to read 
 

 1

: :
.

m w

t t t t t
mw mw mw mk km

k W k w k M k m
r r x x x+

∈ ∈
= − − −∑ ∑

n n

 

 
Stop once xt is a matching. I will argue below that this 
procedure terminates in a matching. By complementary 
slackness this will be an optimal stable assignment. 
 Call rt the dual adjusted rank. Suppose at iteration t, 

1.t
mwx =  In the cases below I examine how rt+1 differs 

from rt. The goal is to show that the dual adjusted rank 
declines in a way that each man will propose to the 
women in much the same order as they would under the 
male-propose deferred acceptance algorithm. 
 In the dual ascent algorithm, when man m proposes to 
woman w at iteration t, she must be his ranked choice (as 
measured by the dual adjusted rank) at that time. If man 
m is woman w’s top choice among those currently pro-
posing to her, then man m’s dual adjusted rank for w (as 
well as all women he ranks below w) will go down by 1. 
However, the dual adjusted rank of all women that man m 
ranks above w will go down by more than 1. Thus, at the 
next iteration, woman w will still be man m’s highest 
ranked woman and he continues to propose to her. 
 If woman w rejects man m, then the dual adjusted rank 
for woman w goes down by 2. However, the dual adjusted 
rank of women he ranks below w that do not have a pro-
posal from a man they rank higher, will go down only by 
1. Thus, at the next iteration he does not propose to his 
next most preferred woman. Rather, he ‘skips’ over her if 
she already has a proposal from a man she ranks higher 
than m. 
 
Case 1: If among all i ∈ M such that xt

iw = 1, man m is 
woman w’s top-ranked choice, 1 1.t t

mw mwr r+ = −  
 Because i is woman w’s top-ranked choice, it follows 
that ∑k∈M:knwm xt

km = 0. Because x t
mw = 1, it follows that 

∑k∈W:knmw x t
mk = 0. 

 
Case 2: If among all i ∈ M such that xt

iw = 1, man m is 
not woman w’s top-ranked choice, 1 2.t t

mw mwr r+ ≤ −   
 Because i is not woman w’s top-ranked choice, it fol-
lows that ∑k∈M:knwm xt

km ≥ 1. Because x t
mw = 1, it follows 

that ∑k∈W:knmw x t
mk = 0. 

 
Case 3: If w nm j and xt

kj = 0 for all k ∈ M such that 
k nj m, then 1 1.t t

mj mjr r+ = −  
 Clearly ∑k∈M:knwmxt

km = 0 and x t
mj = 0. Also ∑k∈W:knmwx t

mk = 
1. 

Case 4: If w nm j and xt
kj = 1 for at least one k ∈ M such 

that k nj m, then 1 2.t t
mj mjr r+ ≤ −  

 Clearly ∑k∈M:knwmxt
km ≥ 1 and x t

mj = 0. Also ∑k∈W:knmw  
x t

mk = 1. 
 
Case 5: If j nm w, then 1

: .
j

t t t
mj mj k M k m kmr r x+

∈= − ∑ n  
Clearly, x t

mj = 0. Also ∑k∈W:knmw x t
mk = 0. 

 
Let Pt = {w ∈ W : ∑m∈Mxmw ≥ 1}. I show first that 
Pt ` Pt+1. Consider first the case t = 0. Suppose man m 
proposed to woman w and man m is woman w’s top 
choice among those who have proposed. Then the dual 
adjusted rank of woman w by man m declines by exactly 
1 (see case 1). The dual adjusted rank of all other women 
declines by at least 1 (cases 2–4). Note that case 5 does 
not apply in this iteration. Therefore, in the next iteration 
man m will continue to propose to woman w. More gen-
erally, any woman who receives a proposal in iteration 0 
continues to receive a proposal in iteration 1. Suppose 
this holds until iteration t. Suppose man m proposes to 
woman w in iteration t and man m is woman w’s top 
choice among those who have proposed at iteration t. By 
cases 1–4 the dual adjusted rank for all woman ranked 
below w declines by at least 1. Consider a woman j nm w. 
By case 5, 
 
 1

:
.

j

t t t
mj mj km

k M k m
r r x+

∈
= − ∑

n

 

 
However ∑k∈M:knjm xt

kw ≥ 1 because any woman who re-
ceived a proposal before iteration t continues to receive a 
proposal at iteration t. Thus the dual adjusted rank of all 
women ranked above w declines by at least 1. Because 
man m did not proposes to these women in iteration t 
their dual adjusted rank must be at least 2 smaller than  
r t

mw. Thus, woman w continues to have the highest dual 
adjusted rank for man m and at iteration t + 1, man m will 
continue to propose to woman w. 
 Next, I show that there must be some t such that 
Pt = W. If not, then, it must be the case that Pt = 
Pt+1 = … _ W. Because Pt _ W, there must be a woman w 
who is proposed to by more than one man. Consider a 
man m who has proposed to her at iteration t and who is 
not her top choice among those proposing to her. Notice 
the following: 
 
1. By case 2, 1 2.t t

mw mwr r+ ≤ −  
2. By case 4, for all j ∈ Pt such that w nm j,  
  1 2.t t

mj mjr r+ ≤ −  

3. By case 5, for all j ∈ Pt such that j nm w,  
  1 1.t t

mj mjr r+ ≤ −  

4. By case 3, for all j ∉ Pt, 1 1.t t
mj mjr r+ = −  Note, for all 

such j it must be that w nm j. 
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To summarize, the dual adjusted rank of all women j ∈ Pt 
such that w om j, goes down by at least 2. This means that 
in all subsequent iterations, man m must propose to a 
woman ranked at or above w in Pt. Eventually, there is a 
woman, w′ ∈ Pt, say, that man m keeps proposing to. This 
means that the dual adjusted rank of all women in Pt  
declines by at least 2, while the dual adjusted rank of all 
women outside of Pt declines by exactly 1. Eventually, 
some woman outside of Pt must have a dual adjusted rank 
that is largest and man m will propose to her, a contradic-
tion. 

Conclusion 

My goal has been to show how one of the most important 
results in the theory of stable matching can be derived us-
ing linear programming. My hope is that it will prompt 
others to consider similar methods in the analysis of gen-

eralizations of the stable matching problem to the many-
to-one-case as well as to matching with contracts. 
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