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Advancements in genome mining, high-throughput se-
quencing and experimental techniques have generated 
an enormous amount of data on natural products. This 
has led to the design and development of advanced 
machine learning (ML) and artificial intelligence (AI) 
algorithms which have simplified the search for novel 
natural products in the 21st century. These algorithms 
could effectively analyse the chemical structure of nat-
ural products and predict their biological function. They 
could also effectively analyse large sets of data in a sophi-
sticated manner. In this context, this article reviews the 
various AI/ML algorithms employed in natural prod-
ucts-based drug discovery. Particular attention is paid 
to case studies employing AI tools in plant and micro-
bial research. Challenges associated with the use of AI 
tools for natural products research have also been dis-
cussed. 
 
Keywords: Artificial intelligence, dereplication, drug 
discovery, genome mining, machine learning, natural pro-
ducts. 
 
ARTIFICIAL INTELLIGENCE (AI) utilizes computers for per-
forming complicated tasks, analysing huge data files and 
evaluating them based on advanced algorithms. It is well 
known that AI has a plethora of applications in various 
fields of research for controlling and processing tasks as it 
analyses effectively as well as interprets rapidly with mini-
mized human faults and reveals complex data structures1. 
Recently, AI is also being used by researchers for the 
identification of molecular characteristics, automatic pro-
cessing, genome mining, dereplication, and prediction of 
targets and bioactivity. The fruitful advancements in machine 
learning (ML) and AI algorithms, and information overload 
in databases and repositories have enabled researchers to 
gain free access to diverse data and utilize AI/ML techniques 
in the mining of natural products (NPs) efficiently2. 
 NPs have garnered proliferating attention in drug disco-
very as they are bio-friendly, less toxic and evolve collabo-
ratively along with their active sites3,4, The high variation 
in the molecular structure and physico-chemical properties 

of NPs makes them a treasured source of novel bioactive 
compounds with various applications in the agricultural, 
biotechnological, food, cosmetics and pharmaceutical in-
dustries5,6. 
 There are over 465,000 plant species existing on the 
Earth, of which 391,000 are vascular plants7. One of the 
enthralling facts about plants is their unique metabolic 
pathway which corresponds to the synthesis of highly 
complex bioactive metabolites8. The diversity of plant meta-
bolites is estimated to exceed 1 million with each plant 
contributing to more than 4.7 structurally unique com-
pounds9. The use of plant extracts as a commercial product 
in food and flavour, cosmetics, and pharma industries has 
been predicted to reach USD 59.4 billion by 2025 (ref. 
10). Plants have also been used for the treatment of several 
diseases worldwide11. Based on this evidence, researchers 
are now focusing their studies on the potential of plants 
and microbes to render NPs with beneficial therapeutic  
effects8. Over the last few decades, AI has been utilized in 
the screening of plant extracts, chemical taxonomy, chemical 
fingerprinting, phylogenetic studies, predicting toxic proper-
ties and determining the structure of phytochemicals based 
on spectroscopic data12. 
 In spite of the incomparable role of NPs in drug design 
and discovery, conventional techniques have several chal-
lenges like extraction, screening, purification, and structure 
elucidation from plant and microbial sources13. Repeated 
identification of the already identified NPs, high demand 
for resources, increasing manual efforts, and time-consuming 
tasks have restrained the interest of scientists and industries 
in NPs research14. However, with the recent advancement 
in omic technologies, including proteomics, genomics and 
metabolomics, it is now easy to retrieve enormous data 
regarding the biosynthetic pathway of secondary metabo-
lites15. At present, omics-related tools and AI-based algo-
rithms aid in the characterization, screening and selection 
of chemical structures with desired bioactivity and physico-
chemical characteristics16. 
 When compared to experimental techniques that only 
involve in vitro and in vivo testing, computational bio-
prospecting methodologies have been reported as effec-
tive, with low cost, less labour and consuming less time17. 
In addition, some structural scaffolds derived from various 
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Figure 1. Artificial intelligence (AI) as a tool for mining plant and microbial secondary metabolites. 
 
 
classes of NPs, such as alkaloids, phenylpropanoids, polyke-
tides and terpenoids, have served as an inspiration to de-
sign new drug candidates18. Figure 1 illustrates the concept 
of AI in mining the various classes of plants and microbial 
secondary metabolites. 

Role of computational methods in virtual  
screening of bioactive metabolites 

Virtual screening strategies have transformed the identifi-
cation of novel bioactive metabolites by evaluating the in 
silico large compound library aiding the exploration of 
their pharmacodynamics, pharmacokinetics and chemical 
space, thus leading to less time, cost and infrastructure in-
volved in the discovery of novel metabolites16. Virtual 
screening strategies have immensely contributed to the 
identification of novel bioactive compounds by assessing 
the in silico structural public libraries against relevant re-
ceptors through knowledge of AI and utilization of molecular 
models, and statistical and probability tools16. This has the 
added advantages of reducing cost, time, manual efforts 
and infrastructure19. These techniques employ a series of 
consecutive and hierarchical procedures with the goal of 
separating out molecules with desirable physico-chemical, 
pharmacodynamics and absorption, distribution, metabolism 
and excretion (ADME) properties, and rejecting those that 
do not meet the profile. The success of discovering novel 
bioactive compounds is more when these techniques are 
integrated with experimental methodologies20. The virtual 
screening strategies will utilize both the computational 
techniques that aim to discover novel bioactive metabo-
lites against a specific target21. These methods should ex-
amine the chemical space of NPs in order to identify the 

bioactive class of compounds and structural scaffolds of 
known compounds. Some of these methods apply less re-
straining structural similarity cut-off and modelling of puta-
tively derived structures of NPs22. The 3D structure depicts 
the configuration of structure and binding sites of ligands. 
Therefore, virtual screening strategies have emerged as an 
essential part of the discovery of novel bioactive metabo-
lites16. Figure 2 depicts the overflow of the virtual screen-
ing strategy for identifying bioactive metabolites along 
with conventional computer-aided discovery of NPs. 

Ligand-based virtual screening 

The ligand-based virtual screening (LBVS) approach uses a 
set of compounds with experimentally demonstrated bioac-
tivity as the starting point and solely relies on the analysis 
of inherent features of the compound, including physico-
chemical, electronic, structural and topological character-
istics that are related to its bioactivity23. Quantitative struc-
ture-activity relationship (QSAR), ML algorithms, ligand-
based pharmacophore modelling, cheminformatics filters, 
and similarity searches based on structure, fingerprint and 
3D shape are some of the computer-generated strategies 
utilized in LBVS24. 

Structure-based virtual screening 

In contrast, the structure-based virtual screening (SBVS) 
strategy uses data on the recognition site of the ligand in 
structure of the receptor as the starting point, which includes 
the binding affinity of ligands, conformation of the receptor, 
charge on the surface of the molecule and configuration of 
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Figure 2. Virtual screening versus conventional computer-aided discovery of natural products. 
Virtual screening – selection of bioactive NPs by virtual screening includes three major sequential 
steps: Library preparation – the bioactive metabolites are obtained from the compound library and 
then checked for correction of structures, generation of conformers and file format conversion. Virtual 
screening – structure-based and ligand-based pharmacophore modelling, Similarity search-based 
3D shape and fingerprints, docking, molecular filters and molecular simulation. Experimental vali-
dation of selected compounds by in vitro and in vivo assays). 

 
 
molecules present in the binding site25. These techniques 
require the 3D structure of the receptor to be fully under-
stood and, ideally, to be in intricate complex with the bioac-
tive substance. Molecular dynamics simulation, structure-
based pharmacophore modelling, and molecular docking 
are a few of the computational techniques used in the 
SBVS methodology21. Virtual screening techniques are 
currently a crucial component in the design and discovery of 
novel bioactive molecules. Therefore, the applications of 
SBVS strategy been increased in academics as well as in-
dustries16. 

AI-assisted virtual screening 

AI has made immense progress in speeding-up the identi-
fication and screening of bioactive metabolites with com-
mercial applications. AI along with molecular modelling 
and cheminformatics have improved the efficiency of virtual 
screening strategies, thus allowing the users to explore the 
extremely diverse chemo-structural topographies of NPs16. 
AI-assisted virtual screening strategies have successfully 
predicted pharmacokinetic properties, molecular targets, 
bioactivities, the permeability of compounds across the 
blood–brain barrier, toxicity and side effects26. AI algo-

rithms utilized in ligand-based strategies have shown a 
high success rate in identifying novel metabolites in less 
time16. Nevertheless, the virtual screening should be con-
cerned with the decision of human experts in order to 
evade false findings and misinterpretation and to choose 
metabolites based on their unique features16. Table 1 lists 
some of those AI tools used for virtual screening and vari-
ous fields of drug discovery. 

Applications of AI in NPs-based drug discovery 

The distinct properties of NPs still confound computational 
experts as well as research scientists. As expected, scien-
tists have developed several computational tools with the 
aid of AI algorithms and implemented them in NPs-based 
drug discovery27. Over the past few decades, infinite datasets 
on molecular structure have been developed which give 
data on the biochemical and physiological functions of 
metabolites as well. The rapid advancement of AI/ML algo-
rithms and increasing datasets of chemical structure could 
proffer an exceptional chance for understanding the asso-
ciation between the structure and function of metabo-
lites28. Those algorithms could also predict the function of 
NPs from biosynthetic gene clusters (BGCs)29. For instance, 
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Table 1. Application of artificial intelligence/machine learning (AI/ML) tools in virtual screening and various fields of natural products  
 (NP)-based drug discovery 

Application Tool and software Method Features 
 

Structure and ligand-based AutoGrow 4 Genetic algorithms Optimization of lead compound and de novo drug design97 
 virtual screening LSA LSA employs a conventional  

 similarity and substructure  
 match algorithm to align the  
 structure for virtual screening 

A structure-based alignment tool for virtual screening of 
pharmaceutical compounds98 

 LigGrep ML Filtration of docked models for enhancing the hit ranks of  
virtual screening99 

 Trix X ML Structure-based molecular indexing tool enabled for the  
fastest and largest virtual screening87 

 Drug finder ML In silico virtual screening tool intended for validation while 
screening the compounds100 

 LS-align ML A high-throughput screening method used to generate fast,  
reliable and accurate atom-level structural alignment of  
ligands101 

 DEEPScreen Convolutional neural networks A high-performance tool used for the prediction of binding of 
the drug to the target102 

Drug design and discovery ChemDes Chemopy, Pybel An integrated on-line software used for the computation of 
molecular descriptors and fingerprints103 

QSAR modelling ChemGrapher Deep learning Recognizes chemical compounds using an optical graph104 
 ChemSAR ChemoPy Generates molecular SAR model benefitting  

cheminformatics105 
 ANFIS Neuro-fuzzy modelling A QSAR model used for the evaluation of physico-chemical 

characteristics of chemical molecules106 
 OntoQSAR ML Interpretation and evaluation of biological and chemical data107 
Drug repurposing GIPAE Gaussian interaction profile A drug repositioning tool used to recognize novel signs in  

existing drugs108 
 DrugNEt ML Integrates heterogenous information by prioritizing the  

interaction of drugs and target109 
Drug repurposing RCDR Collaborative filtering model Gives high preference for the candidate drugs against  

diseases110 
 DrPOCS ML It predicts potential associations between drugs and diseases  

with matrix completion and projection onto convex42 
 Pred-binding Vector machine Predicts the binding of proteins with ligands on a large scale111 
Physico-chemical properties  
 and bioactivity prediction 

CSM-lig ML A web-based tool to compare and evaluate affinity of proteins 
to small molecules112 

 mCSM-AB ML Quantifies mutational effects on the affinity of proteins to 
small molecules in genetic diseases113 

 Chembranch ML Publicly available, integrated Cheminformatics tool114 
 MDCK pred Regression model Prioritizes small molecules by calculating MDCK  

permeability115 
 COSMOfrag Quantum chemistry A high-throughput technique used for predicting ADME  

properties and similarity screening116 
 Vienna LiverTox  ML classification model Identifies and recognizes pharmacokinetic properties117 
 RosENet Convolutional neural network Predicts the accurate binding efficiency of proteins with  

ligand118 
 DeepPurpose Deep learning Open library available for predicting the interaction of drug 

for target119 
Molecular target prediction PASS NB Predicts the bioactivity, mechanism of action and  

pharmaceutical properties120 
 TiGER Multiple self organizing maps  

 (SOMs) 
Qualitatively predicts targets on a larger scale121 

 STarFish MLP, kNN Predicts the prediction of small molecule binding to target95 
 SPiDER SOMs Identification of novel compounds in chemical biology and to 

evaluate the probable side effects121 
 SEA Kruskal algorithm Prediction of chemical similarity of proteins to ligands122 
 
 
the progression of NPs-based drug discovery has been 
gradually improving with the advancement of algorithms 
like biosynthetic gene similarity clustering and prospecting 
engine (BiG-SCAPE), and antibiotics and Secondary Metab-

olites Analysis SHell (antiSMASH) for mining of genome30. 
On the other hand, small molecule accurate recognition 
technology (SMART 2.0) could predict the function of 
NPs effectively31. The identification of biosynthetic gene 
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clusters of secondary metabolites could encode diverse 
structures, which could be effectively predicted by PRISM 
4 (ref. 32). These developments increase the availability 
of chemical structures of NPs and provide an opportunity 
for the researchers to link these structures to the relevant 
functions using AI/ML algorithms28. Therefore, ML and AI 
algorithms have gradually paved the way for prominent 
research in the field of NPs-based drug discovery. The 
most challenging task is the effective and accurate prediction 
of biological functions as innumerable NPs have been dis-
covered in day-to-day life28. Case studies on the use of  
diverse algorithms in the fields of plant and microbial re-
search are discussed below. 

Case studies on the use of AI/ML algorithms on  
plants 

Plants have always been the centre of attraction owing to 
their numerous beneficial effects to humans33. The enor-
mous advancement in plant-based research provides a testa-
ment to the vast array of limited secondary metabolites 
synthesis34. Nevertheless, several biotic and abiotic factors 
affect the biosynthetic pathway of secondary metabolites 
production. Therefore, lot of time, cost and manual efforts 
are needed to screen these novel bioactive metabolites. 
Considering this, an effective alternative is using AI, an in 
silico tool for plant research. It is surprising that AI was 
used to even predict the best suitable culture medium and 
phytohormones for the in vitro growth of plants35. Data 
from in vitro experimental research were utilized in compu-
tational modelling to study the impact of various factors in 
predicting the involvement of phytohormones in plant 
growth33. For instance, using computational techniques, an 
artificial neural network (ANN) was used to predict the 
growth requirements and bulk synthesis of biomass in 
Centella asiatica36. AI predicts the correlation between the 
influencing factors using ANN and provides the nutritional 
imbalance in plants. Hence, the factors affecting plant 
growth could be optimized37. Recently, AI along with micro-
fluidics has been used to enhance the process of drug dis-
covery33. On the other hand, ML was used to increase the 
bioactive metabolite synthesis in Bryophyllum38. This 
work paved way for the synthesis of plant secondary metabo-
lites on a larger scale. AI could also predict the extinct and 
endangered medicinal plants, and therefore could aid in 
the conservation of plants with high therapeutic value39. 
For instance, maximum entropy model, an ML algorithm 
was used for predicting the distribution of a critically en-
dangered medicinal plant, Lilium polyphyllum in the Indian 
Western Himalayan Region40. Similarly, seven ML models 
were used to model the habitat suitability for the medicinal 
plant Ferula gummosa in mountainous regions to avoid 
extinction in the future41. They can also be used for the 
identification of different leaves using an image processor, 
and prediction of the interaction of herbal targets42. Re-
cently, the application of ML techniques in various fields 

of photosynthetic research, including photosynthetic pigment 
studies have been reviewed and diverse strategies on how 
to employ ML in enhancing crop yield have been discus-
sed43. ML was used to increase the bioactive metabolites 
synthesis in plants on a large scale for commercialization 
purposes44. ANN organizes plants based on morphological 
characteristics like size, colour and the dimension of 
leaves. ML uses ANN and square-support vector machine 
(SVM) for predicting the interconnection between photo-
dissociation and its bioactivity33. Table 2 shows the diffe-
rent AI algorithms used in various fields of plant research 
like enhancement of secondary metabolites, plant tissue 
culture, drug design and discovery, and disease treatment. 

Case studies on the use of AI/ML algorithm on  
microbes 

NPs from microbes – selection and screening: The prelim-
inary step in NPs discovery is selection of the organism. 
Among various microbes, actinomycetes have been over-
mined as a significant source of therapeutic compounds, 
which has led to the repetitive discovery of known com-
pounds and the lack of identification of novel compounds2. 
Even though the whole process of extraction of NPs is 
challenging and laborious, cautious exploration of unex-
plored sources enhances the chance of finding novel scaf-
folds2. The conventional method of isolation of NPs is a 
time-consuming process. Hence with the advancement in 
AI/ML and omic techniques, it is possible to predict mi-
crobes proficiently45. For instance, the convolutional neural 
network (CNN) was used to identify diverse shapes of Gram-
positive and Gram-negative bacterial strains by high-through-
put imaging46. This technique could be expanded to identify 
and classify microbes using ML tools2. Scientists have deve-
loped, IDBac using ML for the classification of microbes 
based on their ability to synthesize secondary metabolites 
using matrix-assisted laser desorption/ionization time-of-
flight mass spectrometry (MALDI-TOF MS)47. Using this 
technique, Bacillus subtilis has been categorized depending 
on its capability to synthesize cyclic peptide antibiotics. 
Similarly, ML models have been used to predict the anti-
bacterial activity of fungal secondary metabolites from bio-
synthetic gene cluster data48. Recently, multi-omic techniques 
have been combined with ML algorithms for characterizing 
the marine metabolites datasets, thus providing an unprec-
edented opportunity for discovering novel bioactive com-
pounds from the marine environment49. In the future, 
integration of AI/ML techniques with MALDI-TOF could 
be a possible method to enhance the process of screening 
and extraction of NPs. MALDI has now emerged with imag-
ing MS, which could be utilized for mapping the spatial ar-
rangement of secondary metabolites2. 
 
Genome mining: Recently, next-generation sequencing and 
bioinformatics have paved the way for the identification 
of secondary metabolites with the use of genome mining50. 
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Table 2. Case studies on the utilization of AI algorithms in various fields of plant research 

Algorithm Plant Applications 
 

Enhancement of secondary metabolites in plants   
 Least square-support vector machine (SVM) Chrysenthenum morifolium AI was used to estimate the total flavonoid and  

polysaccharide contents123 
 Artificial neural network (ANN) Bryophyllum sp. To maximize the production of chemical synthesis38 
 Real coded genetic algorithm (MI-LXPM) Gardenia To predict the optimal ideal condition for extraction of  

total phenolic compounds124 
 Neurofuzzy inference system genetic algorithm Corylus avellane To optimize the secondary metabolite concentration125 
Plant tissue culture   
 Multilayer perception – To optimize the surface-sterilization protocol without  

causing damage to the explant126 
 Neuro-fuzzy logic Prunus armeniaca To predict shoot multiplication using hormones, nutrients 

and vitamins127 
 Intelligent image analysis using ANN Solanum tuberosum To predict the characteristic features of the shoot128 
 Genetic algorithm (AI-based modelling) Wrightia tinctoria To optimize the environmental conditions to utilize charcoal 

for rhizogenesis and to lower caulogenesis129 
 Backpropagation algorithms in ANN Cuminum cyminum To predict the formation of callus, and determine its volume 

and fresh weight130 
 Backpropagation neural network Chlorophytum borivilianum To predict the development of shoots in a fermentor and 

fresh weight of plantlets131 
 Multivariate adaptive regression splines  
  algorithm 

Fragaria ananassa To predict the nutrients required for the culture of  
strawberry and to predict the responses like shoot quality, 
multiplication and leaf colour responses132 

 Multilayer perception Pinus taeda To predict the impact of nitrogen source on organogenesis  
of the shoot133 

 Multilayer perception-based modelling Vitis vinifera To optimize the factors affecting in vitro root formation134 
 ANN, fuzzy logic and genetic algorithms Actinidia arguta To reduce mineral and salt content for enhancing the  

micropropagation135 
 ML algorithms and artificial neural network Gyrinops walla Gaetner To predict chemical composition for the production of  

callus136 
 Neurofuzzy logic Prunus sp. To predict the best medium for rootstock  

micropropagation137 
 Regression analysis and ANN analysis Pyrus communis To predict the in vitro culture medium macronutrients for 

rootstock propagation, and analyse the growth parameters 
like shoot tip necrosis, shoot-tip length, explant growth 
rate, vitrification and chlorosis138 

 Neural networks and genetic algorithm Cucumis melo To optimize the in-vitro culture conditions139 
 

Algorithm Target Applications 
 

Drug design and discovery   
 ML algorithm Drug-induced liver injury To predict the upsurge/reduction in the efficacy of multiple 

drug interactions, and evaluate the inhibition rate of drugs140 
 ML algorithm – random forest (RF) and SVM Drug–ADR association To identify different adverse drug reactions, and predict the 

intensity of outcome and the developed ML model could 
predict the death due to adverse drug reactions with 91%  
accuracy141 

 SVM Schizophrenia and depres-
sion/anxiety 

Drug repositioning – to predict indications for a disease 
based on drug expression profiles142 

 Supervised learning (SVM)-neural network Drug–ADR association To predict adverse drug interactions143 
 ML algorithm Classification of Chinese herbs To determine the molecular features of 646 Chinese  

herbs and their active constituents by structure-based  
fingerprints and ADME properties42 

 Logistic regression, RF, and SVM algorithms Drug repurposing To explore the unknown medicinal properties of herbal  
bioactive compounds; has identified novel indications for 
20 known drugs and 31 herbal compounds144 

 Regularized least square (semi-supervised based  
  new modelling) 

Drug repurposing To identify the novel pharmacological significance of  
existing drugs for viral infections145 

 ML approach Drug discovery To elucidate the medicinal value of Xiaoxuming decoction to 
be utilized as a neuroprotective agent146 

  (Contd) 
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Table 2. (Contd) 

Algorithm Target Applications 
 

 Ontology-based AI model AI-based traditional Chinese 
medicine (TCM) screening 

To predict the side effects of prescription147 

AI in disease treatment   
 Neuro-fuzzy Disease treatment To evaluate the pharmacological aspects of medicinal plants 

for the treatment of obesity148 
 Fuzzy logic Disease treatment To group plants with anti-tuberculosis properties based on 

botanical data149 
 Convolutional neural network Rheumatoid arthritis To predict the significance of traditional Chinese medicines 

against inflammatory rheumatoid disease150 
 Network pharmacology-based prediction Cardiovascular disease To predict the mechanism of phytocompounds of Radix  

Curcumae against cardiovascular diseases151 
 ML algorithm Pain disorders To predict the mechanism of action of herbal  

phytocompounds at the atomic level against algesia152 
Other fields of medicinal plant research   
 Convolutional neural network Compound–target interaction  

 of natural products 
To generate scoring energy functions of proteins and  

their ligands. There is an image processor to assist  
protein–ligand binding. To optimize the scoring for stable 
conformations153 

 Image-based convolutional neural network TCM To demarcate diverse species of Zanthoxyli pericarpium for 
aiding traditional Chinese medicine154 

 ML algorithm Biomass production To predict the accumulation of biomass in microalgal  
suspension155 

 
 
In spite of the huge diversity of NPs, their relevant BGCs 
are extremely conserved in microorganisms. These BGCs 
belong to classes of non-ribosomally synthesized peptides, 
polyketide synthases, and ribosomally synthesized and post-
translationally modified peptides, terpenes and alkaloids51. 
This approach starts with identifying known and unknown 
new BGCs from the genome and characterizing them for ana-
lysis. ML algorithms aid in analysing big data for the predic-
tion of these BGCs and reputed determined structures52. 
 Table 3 lists the AI algorithms employed in various fields 
of microbial research. Using genome mining, gladiolin 
was extracted from Burkholderia galdioli in a cystic fibro-
sis patient53. ML and deep learning (DL) approaches have 
also contributed to the identification of mysterious BGCs, 
viz. lanthipeptides54. With the help of genome mining and 
ML and DL approaches, it is possible to extract novel meta-
bolites directly from uncultured microbes55. It is also pos-
sible to identify novel compounds from human microbiota 
using the hidden Markov model (HMM) algorithm. It 
identifies BGCs from metagenome samples56. Some BGCs 
exist silently, which hinders the synthesis of secondary 
metabolites. However, it is possible to predict those genes 
using elicitors, and ML/AI algorithms aid in expressing 
them57. The major disadvantage of the discovery of NPs is 
to identify secondary metabolites from unconventional 
environmental sources or biological niches without microbial 
cultivation. Now with the advancement of AI/ML and 
metagenome, NPs can be predicted directly from biotic 
and environmental sites56. 
 
Metabolite expression and synthesis: Using bioinformatic 
tools and genome sequencing, it has been predicted that 

Myxococcus and Streptomyces possess huge BGCs of sec-
ondary metabolites. However, these BGCs remain silent 
without expression58. Recently, AI/ML algorithms have 
been applied to screen and monitor metabolite synthesis. For 
instance, deep reinforcement learning of AI was used to 
control the coculture of microbes in a fermentor59. Using 
this technique, the parameters of growth and the relevant 
output could be regulated. Hence for the synthesis of NPs, 
this technique could be used to control countless factors. 
Similarly, a high-throughput strategy was employed for 
the activation of these silent, unexpressed BGCs in several 
organisms. Here imaging mass spectrometry (IMS) was 
used to screen the elicitors for inducing secondary meta-
bolite synthesis. The integration of this technique with laser 
ablation coupled electrospray ionization mass spectroscopy, 
led to the identification of a novel glycoprotein from 
Amycolatopsis keratiniphila2. 
 
AI/ML in the dereplication of NPs: Many drugs were dis-
covered during the golden age of the progress of NPs, 
which are used even today as therapeutic agents. Yet, the 
repetitive discovery of already-known compounds gradually 
slowed down the discovery of NPs2. Hence for the reduction 
of time of analysis and resource availability, rapid recog-
nition of identified bioactive metabolites is essential. One 
such process widely used to rapidly identify already known 
metabolites in microbial extracts is dereplication2. As the 
extracts of microbes are enriched with several compounds, 
the dereplication approach could possibly reduce repetition 
and offer data on novel compounds. Therefore, engage-
ment of highly accurate ML/AI tools could make this cru-
cial task easier. Conventionally, dereplication was done 
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Table 3. Case studies on AI algorithms used for microbial research 

Task AI/ML tool Features 
 

Identification of microbes   
 MALDI/TOF SpeDE Identifies microbes based on unique characteristics rather than 

universal similarity156 
 IDBac A bioinformatic tool that amalgamates integral protein and its 

metabolite for detection157 

Genome mining   
 Databases on biosynthetic gene clusters antiSMASH database Most common and inclusive source on secondary metabolites30 
 Bactibase An open-access database exclusive for bacterial antimicrobial 

peptides158 
 MIBiG Large curated database on biosynthetic gene clusters159 
 IMG-ABC Database on biosynthetic laboratory clusters retrieved from  

metagenomes and microbial genomes160 

BGC identification from genomes antiSMASH database Detects biosynthetic gene clusters based on profile Hidden  
Markov Models30 

 PRISM Identifies biosynthetic gene clusters, biological activity and  
cheminformatic dereplication161 

 ARTS To prioritize the most capable gene cluster that encodes  
antibiotics with novel mode of action162 

BGC identification from metagenomes MetaBGC Algorithm used to detect BGC in the data of metagenomic  
sequencing directly163 

 DeepBGC A deep learning approach based on genome mining to predict 
BGC clusters164 

Metabolite production and expression   
 Elicitor screening MetEx UPLC-MS-based high-throughput screening of elicitors165 

Natural products dereplication and structure elucidation   
 Databases DNP Contains the physical and chemical properties of more than 

226,000 natural products63 
 NPEdia Exclusive database on natural products62 
 StreptomeDB Contains chemical and biological data on natural products  

isolated from streptomyces64 
 MarinLit Exclusive database on marine natural products166 
 NuBBE DB Contains over 2200 chemical structures of diverse natural  

molecules acquired from various Brazilian habitats167 
 CMNPD Inclusive and organized data on natural products derived from 

marine sources contains over 32,000 structures of marine  
compounds along with its physical, chemical and ADME  
properties168 

 NaPLeS Free access MySQL database of natural compounds that process 
NP-likeness score of huge compound libraries169 

 UNaProd On-line database of natural compounds that was traditionally 
used as medicine by Iranians. Contains data on more than  
2696 natural compounds derived from plants, animal and  
minerals170 

MS-based dereplication DEREPLICATOR Integration of molecular network with dereplication73 
 SIRIUS-4 To identify molecular structures from MS171 
 GNPS On-line database that contains sample information for  

untargeted MS69 

NMR-based structure elucidation NP-MRD Large NMR database containing more than 41,000 natural  
products78 

 DEEP picker Deconvulutes the complicated 2D NMR spectra-based deep  
neural network79 

 
 
using HPLC coupled with a UV/photodiode array (PDA) 
detector which has integral library databases60. However, 
this could not give data on the structure, and hence instru-

ments with advanced multispectroscopic detectors are 
needed for capturing the additional spectral characteristics 
of the compounds2. 
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AI/ML in mass spectrometry-assisted dereplication: Mass 
spectrometry (MS) is extensively used for dereplication of 
the NPs as it is accurate, rapid and highly sensitive. MS 
has the added advantage of retrieving huge amounts of 
structure-related data even from small amounts of samples 
using a non-targeted strategy. The integration of mass-related 
data with UV/PDA could be used to recognize compounds 
with the aid of databases like MarinLit61, NPEdia62, Diction-
ary of Natural Products63 and the Natural Product Atlas64. 
This technique was used to dereplicate the bioactive meta-
bolites of many actinomycetes65. The efficient screening 
of bioactive metabolites can be achieved by liquid chroma-
tography-mass spectrometry (LC-MS), but the challenging 
part is data analysis. For this, scientists have to screen and 
search UV spectra, mass spectra and micro-organisms data 
in various databases2. Therefore, the use of ML techniques 
will be a possible way to analyse and identify natural 
products based on their spectral data without searching the 
databases manually. 
 The major disadvantage concerned with MS is that the 
molecular mass of several parent molecules of various meta-
bolites overlaps depending on the MS spectra66. Hence advan-
ced techniques like tandem MS could detect the metabolites 
with high sensitivity depending on the MS/MS separation67. 
However, analysis of MS/MS data is a time-consuming 
and labour-intensive manual task. Hence, ML algorithms 
have been used recently to evaluate these hugely resolved 
MS spectra with decreased noise2. THRASH, XCMS, MS-
Dial, MZmine, Decon2LS and MetaboAnalyst are some of 
the AI/ML tools used for the analysis and processing of 
MS data2. Nowadays commercialized suppliers like Thermo 
Fisher and Agilent are equipped with algorithms like Mass-
Hunter and XCalibur for manual prediction of metabolites 
with high confidence68. 
 Recently, molecular networking (MN) has been used to 
dereplicate novel bioactive metabolites from diverse 
sources. It evaluates complicated data files of MS spectra 
and images them into network depiction. GNPS has a col-
lection of reference spectra of a wide variety of com-
pounds deposited from various sources which could be 
analysed by MN69. This integrated approach is known as 
Global Natural Products Social Molecular Networking. 
MN identifies compounds depending on the similarity of 
MS/MS spectra and it links the novel metabolites with 
known compounds by the utilization of alike fragments. 
Dereplication could be accomplished using MN with high 
success probability. For instance, around 260 microbial 
strains from various sources have been screened using 
MN. Through this, the metabolome of Pseudomonas contri-
buted to the identification of bananamide and poaeamide 
B (ref. 70). Similarly using MN, conulothiazole C and iso-
conulothiazole B were identified from blue-green algae71. 
Recently, a conventional metabolomics strategy coupled 
with integrated untargeted liquid chromatography-tandem 
MS along with synchronized detection of protein affinity 
via native MS has been formulated. A novel inhibitor of 

serine protease, rivulariapeptolides was discovered using 
this approach72. It could be a significant method for drug 
discovery from natural products in the future. 
 An advanced algorithm, DEREPLICATOR+ has been 
developed to aid the identification of various classes of 
NPs like terpenes, alkaloids, polyketides, benzenoids and 
flavonoids73. The major issue involved in the identification of 
NPs is the extraction of bioactive metabolite during purifica-
tion of the extract. As a result, integrated bioinformatics 
coupled with bioactivity-based MN was developed. This 
could be used for mapping the score of bioactivities74. 
 It is easy to predict the structure of already known com-
pounds with the available MS tools, but it is difficult to 
predict the structure of unknown compound. However, this 
became possible with ML. For instance, SIRIUS 4, a web-
based tool uses SVM for identification of the structure of 
compounds75. An improved version, ZODIAC was devel-
oped, which is 16.5 times more advanced than SIRIUS 4 
and could even predict the molecular formula of compounds. 
Later, deep neural network (DNN) was developed for the 
prediction of unidentified metabolites for which no struc-
ture or spectra-related data were available75. Another tool, 
MS2DeepScore predicts the unknown compounds based on 
MS similarity and identifies them by grouping69. Hence, us-
ing MN for dereplication would prove successful and there-
fore could be utilized in the future in combination with ML 
for interpretation of the structure of novel compounds2. 
 
Dereplication of NPs using NMR: Interpretation of meta-
bolite structure is another crucial task. Even though unambi-
guous and precise interpretation of structures was provided 
by X-ray crystallography, its application is limited as it re-
quires a single crystal76. On the other hand, nuclear magnetic 
resonance (NMR) is a widely used spectroscopic tech-
nique which infers structural data depending on the spec-
trum77. NMR-based databases like CHNMR-NP, NAPROC-
13, BMRB and Spektraris have many disadvantages and 
hence do not aid in the NPs discovery. As a result, NP-
MRD, a database based on NMR was developed which 
has data on >41,000 NPs extracted from over 7400 sources78. 
The development of this database is ongoing and in the fu-
ture, it will allow efficient elucidation of structure and also 
dereplicate in an automatic manner. SMART 2.0 analyses 
and characterizes a complex mixture of compounds leading 
to the characterization of novel NPs31. Using SMART 2.0, 
symplocolide, a novel macrolide was identified and anno-
tated. Then from 1H–13C HSQC NMR spectra, SMART-
miner was developed for identifying the complex metabo-
lites using CNN. For training this tool, around 657 chemical 
compounds retrieved from the Biological Magnetic Reso-
nance Data Bank (BMRB) and Human Metabolome Data-
base (HMDB) were analysed. This tool could identify these 
molecules from an amalgamated mixture with 88% accuracy. 
 Recently, DEEP picker, an AI tool based on DNN has 
been developed for the analysis of 2D NMR spectra79. The 
ML technique has been used for the prediction of various 
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Figure 3. Applications of AI in natural products (NPs) drug discovery. 1, Genome mining (PRISM, BAGEL, antiSMASH, ARTS). 
2, Selection and screening of natural products (IDBac, SPeDE, MALDI-TOF). 3, Dereplication of natural products 
(DEREPLICATOR, GNPS, SIRIUS-4). 4, Classification of metabolites. 5, Interpretation of structure (DEEP picker, DP4-AI, 
NAPROC-13). 6, Prediction of physico-chemical properties (OpenChem, ChemSpider, PCLIENT, E-BABEL). 7, Prediction of bio-
activity (ML-classifier, Deep affinity, DeepTox, PADME, KronRLS). 8, Identification of target (BANDIT, SPIDER, SuperPred, 
DEcRyPT). 

 
 
classes of NPs from 13C-NMR spectral data80. As far as dere-
plication is concerned, high-resolution mass spectrometry 
(HRMS) is preferred over NMR owing to its high sensitivity. 
However, NMR could predict the optical isomers accurately 
and identify organic molecules in the extract81. MixONat 
based on 13C-NMR was developed for the identification of 
structurally similar NPs and optical isomers. This derepli-
cation software was able to identify xanthones from 
Calophyllum brasiliense82. Another tool based on 1H-NMR, 
eliciting nature’s activities (ELINA) was developed for 
detection of the chemical characteristics correlating with 
biological activity prior to the extraction of compounds. 
Hence, this tool identified novel lanostane triterpenes 
from the fungal extract of Fomitopsis pinicola83. 

Other applications of AI/ML tools 

Prediction of bioactivity and identification of target 
using AI/ML 

Generally, the bioactivity of NPs is identified depending 
on the phenotypic or screening by high-throughput tech-
niques owing to the diverse structures and extensive chemi-
cal gaps84. On the other hand, experimental identification 
of targets has been conventionally performed using chem-
ical proteomics and genomics. However, validation of the 
targets is difficult, time-consuming and requires more effort85. 
Computational strategies, in turn, could reduce these con-
straints and limit the search for target screening86. Figure 3 
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Table 4. Identification of targets and prediction of bioactivity of natural products using AI/ML 

Tool              Features Applications 
 

BANDIT Bayesian-based ML  
 approach 

Prediction of drug binding targets.  
Predicted more than 4000 molecules with 90% accuracy. 
Validation of 14 new microtubule inhibitors172. 

deepDTnet Deep learning (DL) tool Identifies target from heterogenous networks2 
ML-classifier ML-based tool Utilizes genome mining for prediction of biological activity. 

Predicts the antifungal and antibacterial activity of natural products based on BGS with 80%  
 accuracy173. 

SPiDER ML-based tool Target identification for drugs and computer-generated scaffolds.  
Identification of novel fenofibrate-related compounds121. 

SuperPred Prediction webserver Classification of drugs and prediction of targets by considering 2D, 3D and fragment similarity. 
Alternative to chemoproteomics174. 

KronRLS ML algorithm Prediction of drug–target interaction175 based on features and similarity. 
DeepDTA DL algorithm Prediction of drug–target interaction based on 3D structure of the protein. 

Used to identify therapeutic efficacy of antiviral medicines against SARS-CoV-2 (ref. 176). 
PADME DL algorithm Analyses drug-induced transcriptome data for prediction of drug–target interaction177. 
DeepAffinity DL algorithm Uses both convolutional neural network and recurrent neural network (RNN) to predict the binding  

 affinity of drug to target84. 
DeepTox DL algorithm A DL tool that predicts toxicity174. 
 
 
depicts the applications of AI algorithms in various fields 
of NPs based drug discovery. 
 When compared to conventional ligand-based and struc-
ture-based computational identification of targets, AI/ML-
based strategies have several pros and hence can be engaged 
successfully for the identification of NP targets2. At pre-
sent, the advanced features of AI algorithms help improve 
the prediction of binding affinity by considering the simi-
larity between the drug compound and its relevant target. 
Table 4 lists the widely used AI/ML tools for target identi-
fication and bioactivity prediction. From a research stand-
point, the validity and accuracy of such algorithms remain 
a key limitation. In order to increase the accuracy and preci-
sion of AI-based algorithms through selected and substantial 
data input, a comprehensive study needs to be conducted87. 

Prediction of physico-chemical properties 

It is clear that each compound possesses diverse physico-
chemical properties like solubility, degree of ionization, 
partition and permeability coefficient that may interfere 
with the pharmacokinetic qualities of a molecule and drug–
target binding effectiveness88. To assist with this, many 
AI-based techniques for predicting the physico-chemical 
characteristics of chemical compounds have been developed. 
Molecular fingerprinting, SMILES format, Coulomb ma-
trices and potential energy measurements are among the 
AI-based tools89. A QSAR model was developed90 to fore-
cast six different physio-chemical characteristics of eco-
friendly agents taken from the US Environmental Protection 
Agency data. Later, six AI-based systems for the predic-
tion of chemical absorption in the human digestive tract 
were developed. These include SVM, k-nearest neighbour, 
probabilistic neural network, ANN, partial least square 
(PLS) and linear discriminate model. SVM has a greater ac-

curacy at 91.54% than the other models mentioned 
above91. An ML-based model was developed to predict the 
physico-chemical characteristics of foreign chemicals like 
bioconcentration factors, solubility in water, octanol–water 
partition coefficient, melting and boiling point, and vapour 
pressure87. 
 Furthermore, several AI-based tools like ALOGPS 2.1 
(http://www.vcclab.org/lab/alogps/), E-BABEL (http:// 
www.vcclab.org/lab/babel/0), E-DRAGON (http://www. 
vcclab.org/lab/edragon/), PCLIENT (http://www.vcclab. 
org/lab/pclient/), ASNN (http://www.vcclab.org/lab/asnn/), 
ChemSpider (http://www.chemspider.com/), SPARC (http:// 
sparc.chem.uga.edu/sparc/) and OSIRIS property explorer 
(https://www.organic-chemistry.org/prog/peo/) have been 
developed. The quantitative structural toxicity of tyrosine 
derivatives intended for effective and safe inflammatory 
treatment was further predicted using ORISIS Property 
Explorer92. Only 19 of the 55 bioactive compounds were 
found to be effective cyclooxygenase-2 inhibitors, accord-
ing to the data generated by ORISIS. In a similar vein, 
models based on random forest (RF) and DNN were deve-
loped to forecast human intestinal absorption of various 
chemical substances. Therefore, it must be inferred from 
the instances that the AI-based strategy significantly con-
tributes to drug discovery and development through the 
prediction of physico-chemical features87. 

Challenges and limitations in NPs-based drug  
discovery 

Virtual screening–exclusion of compounds 

In comparison with the application of conventional methods 
for the extraction of novel bioactive metabolites, computa-
tional strategies are known to be prognostic, low-cost and 

http://www.vcclab.org/lab/alogps/)
http://www.vcclab.org/lab/alogps/)
http://www.vcclab.org/lab/babel/0)
http://www.vcclab.org/lab/edragon/)
http://www.vcclab.org/lab/pclient/)
http://www.vcclab.org/lab/pclient/)
http://www.vcclab.org/lab/pclient/)
http://www.vcclab.org/lab/asnn/)
http://www.vcclab.org/lab/asnn/)
http://www.chemspider.com/)
http://sparc.chem.uga.edu/sparc/)
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http://sparc.chem.uga.edu/sparc/)
https://www.organic-chemistry.org/prog/peo/
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beneficial. Nevertheless, regardless of these advantages, 
they also have challenges and limitations, and most of them 
are susceptible to bias93. Analysis of diverse chemical struc-
tures and bioactivity of NPs by similarity-based computa-
tional tools provides biased data as it has a postulation that 
novel compounds might be similar to well-known bioactive 
compounds93. This hypothesis leads to errors in the deve-
lopment of models and hence can decrease the diversity of 
newly identified chemical structures. Hence, it is obvious 
that some compounds could be excluded from the screening 
process and could possibly minimize the investigation of 
novel chemical compounds with unique biological activity. 

Generation of inaccurate data 

The major challenge associated with NPs-based drug tar-
gets is identifying the mechanism of action and their relevant 
side effects, which is an expensive and time-consuming 
process94. In spite of several advantages, the use of AI/ML 
tools could generate inaccurate data, and only already 
known targets can be predicted and validated95. On the 
other hand, the selection of a drug molecule depends on 
whether it has any side effects or toxicity. However, this 
requires a prolonged time-period and it is an expensive 
process. It also requires validation of the molecule by in 
vitro and in vivo experimental studies for assessing toxicity2. 
Hence, computational toxicology could be used for screening 
several compounds simultaneously, thus reducing the time 
of performing animal studies. However, this could also 
generate inaccurate data2. 

Molecular featurization (technical issue) 

Over past few decades, infinite datasets on molecular 
structure have been developed which provide data on the 
biochemical and physiological functions of metabolites as 
well. The rapid advancement of AI/ML algorithms and in-
creasing datasets of chemical structure could proffer an 
exceptional chance for understanding the association bet-
ween the structure and function of metabolites26. Similarly, 
these algorithms can also predict the function of NPs from 
BGCs29. 
 The most challenging task is the effective and accurate 
prediction of biological functions, as innumerable NPs 
have been discovered in day-to-day life28. The next challenge 
for the development of successful ML/AI models lies in 
the featurization of molecular structure of NPs. Molecular 
featurization is a process that converts the chemical struc-
ture of NPs to computer-readable formats96. NPs predomi-
nantly exist as high molecular weight compounds with 
diverse physico-chemical properties and complex structures. 
On the other hand, these molecular featurization tools are 
designed and optimized for targeting smaller molecules. 
Hence, current featurization tools cannot be used when the 
structural and physico-chemical properties of NPs deviate 

from those of smaller molecules28. First, the performance 
of existing featurization tools could be examined with dif-
ferent NPs having complex structures. Based on these data, 
new featurization tools may be developed which will tailor 
structurally complex NPs in a better way. 

Interpretation of predicted data 

The next challenge lies in the interpretation of data predic-
ted by AI/ML models. As NPs possess numerous biological 
functions, understanding the bioactivity and mechanism of 
the action itself is a complicated task as many factors are 
involved. Therefore, the predicted outcomes from ML/AI 
models should be explicable for a proper understanding of 
the biochemical properties of NPs28. ML coupled with bio-
chemistry approaches could employ various computational 
tools for predicting the cellular, molecular and biological 
activities of NPs. Therefore bioactivity, targets and toxicity 
predicted by AI/ML tools could provide clues regarding 
the mechanism of action of NPs. 

Conclusion and future prospects 

NPs have encouraged several successful drug discovery 
stories, but challenges like limited yield, unfriendly extrac-
tion, unidentified functions, unpredicted targets and intricate 
chemical synthesis contributed to the decline of NPs-based 
drug discovery. AI and ML algorithms gradually integrated 
various stages of NPs drug discovery by assisting in find-
ing and elucidating the bioactive structures, and capturing 
their molecular patterns for target prediction. In this study, 
we have extensively reviewed the latest AI/ML algorithms 
employed in various fields of NPs-based drug discovery. 
These applications have been extensively growing in the 
last few decades, fuelled by the exceptional success of 
AI/ML-based approaches in diverse fields of science and 
technology. 
 The advancement of AI/ML techniques has unlocked 
innovative approaches to determine novel, industry-oriented 
applications of NPs by just minimizing the economic and 
time constraints required for their exploration. Yet, AI algo-
rithms cannot be utilized completely for the successful 
exploration of NPs. The extensive diversity and structural 
complexity of NPs impose a great challenge for computa-
tional experts to develop a novel AI algorithm that could 
analyse different classes of metabolites efficiently. There-
fore, the design and development of an AI tool that could 
analyse enormous amount of data and different classes of 
secondary metabolites efficiently could contribute to fruit-
ful outcomes in the future. 
 There exists a significant gap between wet laboratory 
(experimental) and computational research. Researchers 
working on NPs and computational experts could collabo-
rate for successful characterization of the functions of 
NPs. Researchers could elaborate upon the complicated 
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physico-chemical properties of NPs, whereas experts in 
computers could develop suitable AI tools and featurization 
methods for better prediction. Finally, researchers could ana-
lyse and validate the predictions generated by AI. There-
fore, collaboration between diverse fields of research may 
contribute to the efficient mining of NPs and better char-
acterization of their functions. 
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