## IN VITRO SYNTHESIS OF CITROVORUM FACTOR ACTIVITY BY RAT BLOOD

## V. B. MITBANDER AND A. SREENIVASAN

Department of Chemical Technology, University of Bombay, Bombay

THE recognition of a new factor in liver and in fermentation liquors<sup>2</sup> which supports the growth of Leuconostoc citrovorum 8081 and its close relation to pteroyl glutamic acid (PGA)<sup>3,4</sup> has been followed by its synthesis (folinic acid,<sup>5</sup> leucovorin<sup>6</sup>) from PGA and isolation from liver in a crystalline form. Excretion of this factor (CF) in urine is in proportion to the amount of PGA in the diet.8 CF concentrates and leucovorin are more effective than PGA in reversing antagonists of PGA for micro-organisms and mice;4 natural CF in this respect is nearly twice as active as the synthetic product.' Leucovorin is also much more active than PGA in inducing the disappearance of megaloblasts in cultures of bone marrow of untreated patients with pernicious anemia.9 These findings along with observations on the enzyme systems present in rat liver<sup>10</sup> and in Lactobacilli<sup>11</sup> converting PGA to CF would indicate that CF or a derived product from it is the functional form of PGA.

The ability of blood cells to convert riboflavin to flavinadenine dinucleotide, 12 nicotinic acid to nicotinamide mononucleotide 13 and thiamine to co-carboxylase 14 suggested this search for the presence of a similar mechanism in blood for the conversion of PGA to CF activity.

Adult albino rats (inbred Wister strain) were maintained on the laboratory stock diet or in the case of folic acid-deficient rats, on the purified folic acid-free ration of Fatter-paker et al.,  $^{15}$  with supplementation of 0.15 mg. per kg. of vitamin  $B_{12}$  (Merck) and 2 per cent. phthalylsulphathiazole. The blood,

withdrawn under phenobarbitone anesthesia from the portal vein was collected into chilled, citrated Erlenmeyer flasks and quickly utilized for the experiments.

The procedure followed for the in vitro synthesis of CF consisted in incubating at 37° C. a mixture of 2 c.c. blood and 2 c c. Krebs-Ringers phosphate buffer of pH 7.4, together with appropriate additions (Table I) and water to a total volume of 5 c.c. At the end of 3 hours, the contents in each vessel, after adjustment to neutral pH, were autoclaved for 15 minutes at 15 lb. pressure, cooled, homogenised and centrifuged. The supernatants which were often turbid were assayed titrimetrically16 for CF activity using L. citrovorum 8081 as the test organism and leucovorin (Lederle) as the standard. The cells in duplicate sets of flasks were crushed well after incubation and pH brought to 7.6. The contents were next autolysed under toluene for 24 hours at 37°C, prior to assay after neutralization and autoclaving as above. Under these conditions there was maximum release of bound CF which accounted for most of the CF activity. Enzymic release of bound CF23 was not resorted to on account of the high blanks.

From the results presented in Table I, it may be observed that the blood system could convert PGA to CF. This synthetic ability is destroyed if the blood were heated at 100°C. for 3 minutes. The values with the autolysed samples suggested that the enzymes for this conversion resided in the cells and was confirmed in other experiments with the formed

TABLE I

Synthesis of CF activity from PGA by normal and PGA-deficient rat blood

|                                                          |      | Normal animals       |                       | PGA-deficient animals |
|----------------------------------------------------------|------|----------------------|-----------------------|-----------------------|
| Supplements                                              |      | Before autolysis     | After autolysis       | After autolysis       |
|                                                          |      |                      | CF mµg, per c.c. blo  | od                    |
| Blood + PGA (10 μg.)<br>Blood+PGA (10 μg.) + AA*(10 mg.) | * *, | 0·20<br>1·72<br>3·20 | 4·92<br>8·90<br>13·72 | <0.2<br>9.0<br>13.0   |

<sup>\*</sup> Freshly neutralised ascorbic acid (AA)

elements of the blood only. The effect of ascorbic acid in enhancing CF synthesis is appreciable as with liver slices. 10

Maximum synthesis with intact cells occurred in 3 hours of incubation and, under comparable conditions crushed cells did not show
much synthetic ability for CF. These observations excluded the possibility of any synthesis
occurring during autolysis, the increased values
for CF being therefore, attributable to liberation from bound forms only.

The results with blood from PGA-deficient animals, included in Table I, would show that though there is negligible CF activity present initially, incubation with PGA with or without AA produces nearly as much CF as with normal blood. However, there is evidence to suggest that in a folic acid deficiency induced by aminopterin there is almost complete impairment of this enzyme system.

Aminopteria addition to the incubating mixture (Table II) blocks the conversion of PGA to CF by the blood cells considerably (cf. 17); for these experiments, the standard curves were run in presence of aminopteria and it was ascertained that, in the dilutions employed, it made no difference from normal in the response to growth by the organism. Since aminopteria is also known to interfere with the utilization of CF in micro-organisms, 18 it would seem that this antagonist may have two or more important sites of action and interference with the metabolic alteration of PGA is only one of them.

TABLE II

Effect of aminopterin on in vitro synthesis of CF from PGA by normal rat blood

| Supplem ents                                                                                                                                                                                | CF mµg. per ce. blood            |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--|
| Blood<br>Blood+FA (10 $\mu$ g.)<br>Blood+FA (10 $\mu$ g.)+Aminopterin (5 $\mu$ g.).<br>Blood+FA (10 $\mu$ g.)+AA (10 mg)<br>Blood+FA (10 $\mu$ g.)+AA (10 mg.)<br>+aminopterin (5 $\mu$ g.) | 5·0<br>9·4<br>4·8<br>14·2<br>6·2 |  |

In an attempt to characterize the CF activity synthesized by the blood cells, a dose response curve was obtained for L citrovorum against increasing concentrations of the blood filtrate and was found to differ from a similar curve with equivalent concentrations of Leucovorin (Fig. 1). Such a difference was also seen with the xanthine culture filtrate of L arabinosus which synthesizes considerable CF activity from p-aminobenzoic acid<sup>19</sup> and has recently been

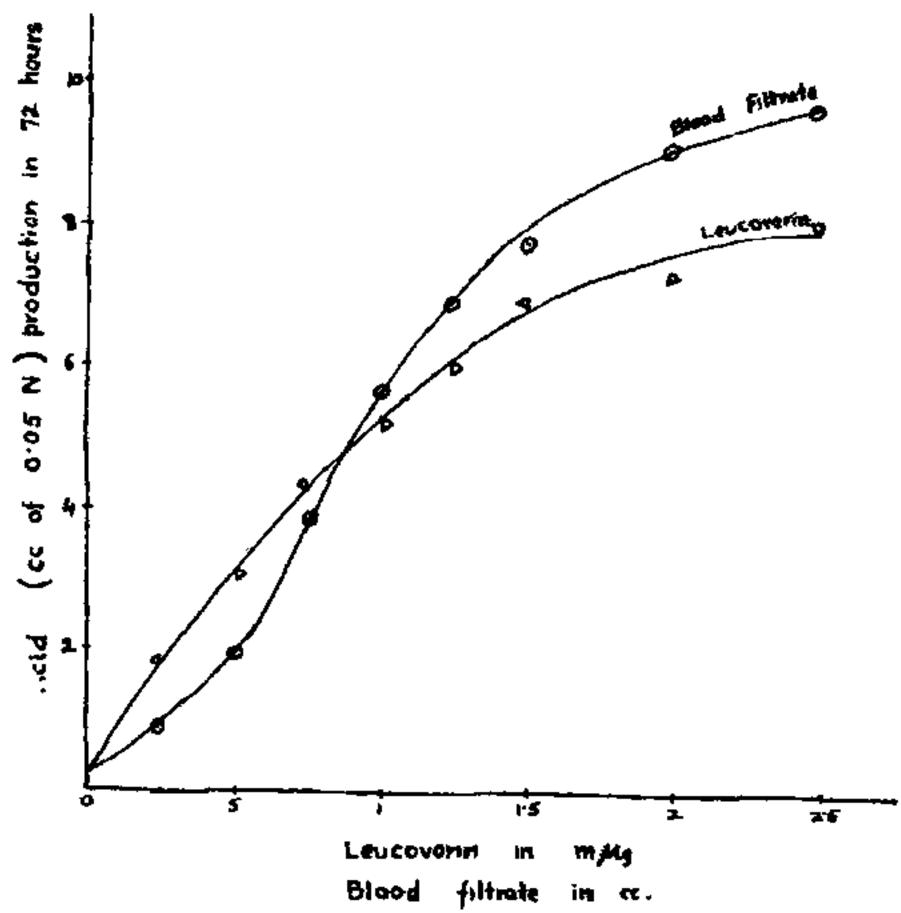



FIG. 1. Dose Response Curve

reported for Hemofolin,<sup>20</sup> a factor synthesized when leucocytes from bone narrow are incubated with PGA While there are reports of probable new factors<sup>21,22</sup> and conjugates<sup>23</sup> related to CF, it is possible that presence of inhibitors or activators in blood filtrates and other crude extracts may account for the observed differential response. Bioautographic studies to characterize the CF activity are in progress.

Our thanks are due to the Indian Council of Medical Research for supporting this work and to Lederle Laboratories, Ltd. and Chas. Pfizer, Inc., for generous supplies of chemicals.

<sup>1.</sup> Sauberlich, H. E. and Baumann, C.A., J. Biol. Chem., 1948, 176, 165. 2. Emery, W. B., Lees, K. A. and Walker, A. D., Biochem. J., 1950, 46, 572. 3. Sauberlich, H. E., Arch. Biochem. 1949, 24, 224. 4. Broquist, H. P., Stokstad, E. L. R. and Jukes, T. H., J Biol. Chem., 1950, 185, 399. 5. Flynn, E. H., Bond, T. J., Bordos, T. J. and Shive, W., J. Amer. Chem. Soc., 1951, 73, 1979. 6. Brockmann, J. A. Jr., Broquist, H. P., Roth, B., Smith, J. M., Jr., Fahrenbach, M. J., Cosulich, D. B., Parker, R. P., Stokstad, E. L. R. and Jukes, T. H., Ibid., 1950, 72, 4325. 7. Keresztesy, J. C. and Silverman, M., Ibid., 1951, 73, 5510. 8. Sauberlich, H. E., J. Biol. Chem, 1949, 181, 467. 9. Callender, S. T. and Lajtha, L. G., Blood, 1951, 6, 1234. 10. Nichol, C. A. and Welch, A. D., Proc. Soc. Exptl. Biol. Med., 1950, 74, 52, 11. Hendlin, D., Koditschek, L. K. and Soares, M. H., J. Bact., 1953, 65, 465. 12. Klein, J. R. and Kohn, H. I., J. Biol. Chem., 1940, 136, 177. 13. Leder, I. G. and Handler, P., Ibid., 1951, 189, 889. 14. Woolley, D. W., Ibid., 1951, 191, 43. 15. Fatterpaker, P., Marfatia, U. and Sreenivasan, A., Nature, 1951, 167, 1067, 16.

Pfander, W. H., Dietrich, L. S., Monson, W. J., Harper, A. E. and Elevhjem, C. A., Proc. Soc. Expt. Biol. Med., 1952, 79, 219. 17. Nichol, C. A. and Welch, A. D., Ibid., 1950, 74, 403. 18. Franklin, A. L., Stokstad, E. L. R., Hoffman, C. E., Belt, M. and Jukes, T. H., J. Amer. Chem. Soc., 1949, 71, 3549. 19. Mitbander, V. B. and Sreenivasan, A., Curr. Sci., 1951, 20, 129.

20. Swendseid, M. F., Wright, P. D. and Bethell, F. H. Proc. Soc. Exptl. Biol. Med., 1952, 80, 689. 21. Sarett, H. P., Arch. Biochem., 1951, 34, 378. 22. Lascelles, J. and Woods, D. D., Brit. J. Expt.. Path., 1952, 33, 288. 23. Doctor, V. M. and Couch, J. R., J. Biol. Chem., 1953, 200, 225.

## NATIONAL RESEARCH COUNCIL OF CANADA—POST-DOCTORATE FELLOWSHIPS

THE NATIONAL RESEARCH COUNCIL OF CANADA will award for 1954-55 approximately 40 Post-Doctorate Fellowships for research in chemistry and physics, tenable in the National Research Council Laboratories at Ottawa, and 10 Post-Doctorate Fellowships in the biological sciences, tenable in the Prairie Regional Laboratory of the National Research Council at the University of Saskatchewan, Saskatoon, and in the laboratories at Ottawa.

Chemistry: (approximately 25 awards, tenable in the Ottawa Laboratories).—Chemical Kinetics and Photochemistry; Surface Chemistry and Low Temperature Colorimetry; Molecular Spectra; Organic Chemistry with Special Reference to Alkaloids and Other Natural Products; Mechanism of Organic Reactions; Absorption Spectra of Organic Compounds; Physical Properties of Liquids and Gases; Critical Temperature Phenomena and Liquid Structure; Catalysis; Colloids; Corrosion Research; Chemical Engineering; Metallurgical Chemistry; Polymer Chemistry.

Physics: (approximately 15 awards, tenable in the Ottawa Laboratories).—Molecular Spectra; Molecular Beams; Cosmic Rays; X-Ray Diffraction; Low Temperature and Solid State Physics; Theoretical Physics; Acoustics; Photographic Optics; Photogrammetric Research; Atmospheric Optics; Radiology.

Biological Sciences: (approximately 10 awards, tenable in the Saskatoon and Ottawa Laboratories).—Microbiology; Fermentation Chemistry and Enzymology; Carbohydrate Chemistry; Biosynthesis of Lignin; Chemistry

of Vegetable Oils and Fats; Enzymatic Studies of Proteins; Photosynthesis; Biometrics; Animal Biochemistry.

An applicant should not be more than 35 years of age and should possess a Ph.D. Degree from a recognised University or expect to obtain such a Degree before taking up this award. There are no restrictions as to the nationality of the applicant, but successful applicants must meet all Canadian immigration requirements. For single Fellows the stipend is \$3,000 per annum, and for male Fellows who are married, the stipend is \$3,500 per annum. This award is tax-free and payments are made twice monthly. A grant-in-aid of travelling expenses will be made to persons coming from abroad. A further grant will be paid to a married Fellow if his wife accompanies him to Canada similar grant will be made on the termination of the Fellowship if the holder is returning to his home abroad Fellowships are tenable for a period of one year, but applications for a renewal for a second year will be considered

Applications shall be made on a special form that may be secured from the Secretary, Laboratories Awards Committee, National Research Council, Ottawa, Canada, or from the Chief Scientific Liaison Officer, National Research Council of Canada, Africa House, Kingsway, London, W C.2, England, and should be submitted direct to the Ottawa address, not later than February 15, 1954. For additional information regarding these Fellowships, attention is directed to a booklet entitled "National Research Council Post-Doctorate Fellowships".

## INSTITUTE OF PHYSICS (INDIAN SECTION), LONDON

As the result of a recent postal ballot, the Committee of the Indian Section of the Institute of Physics, London, has been reconstituted as follows: Sir C. V. Raman (Chairman), Dr. S. S.

Bhatnagar, Dr. K. S. Krishnan, Prof. G. I. Finch, Dr. S. Ramachandra Rao and Mr. T. N. Seshadri (Hon. Secretary).