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INTRODUCTION

i1s difficult to trace the precise origins of

T
I many scientific theories. With information
theory, sometimes called communication theory,
one need not go back farther than the twenties
when Nyquist and Hartley tried to develop a
quantitative measure of information to assess
the capacities of telecommunication systems. It
is only during the last decade or so, however,
that a thecry of information has been deve-
loped and its concepts have found widespread
use outside telecommunication engineering,
Norbert Wiener, to whom the basic philosophy
of modern information theory is due, was the
first to recognize the universal character of the
communication problem encountered not only
in telecommunication systems but also 1n liv-
ing beings and social organizations. We read in
his boock on Cybernetics a panoramic descrip-
tion of the growth of these ideas against the
background of the problems of the last war. A
little later, in 1948, Claude E. Shannon of the
Bell Telephone Laboratories published his clas-
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sic papers on the mathematical theory of com-
munication. Although Shannon was concerned
in his work primarily with the telecommuni-
cation porblem, the mathematical model he set
up for a communication system has been found
to be useful in many different disciplines and
the concepts of communication theory have
penetrated into fields as far away as linguis-
tics. psyehology, neurophysiology and others.
Today, ten years later, the domain of infor-
mation theory extends far beyond telecommu-
nication engineering and some of its most in-
teresting problems lie just on the boundaries
of telecommunication and other sciences.
Nevertheless, in an expository account it 1is
desirable to develop the fundamental concepts
of ipnformation theory within the confines of

telecommunication engineering before their use
in other fields is considered. We shall lean
heavily on Shannon’s work in introducing the
current notions of communication theory.

ANATOMY OF TELECOMMUNICATION SYSTEMS

In the interests of a general theory of com-
munication we must abstiract from the wide
variety of communication systems the essential
features which they all have in common, Every
communication system is primarily a device for
transmitting messages - from their sources to
their destinations. These messages may be
spoken words with an acoustic pressure-time
pattern as in telephone conversation, written
characters as in telegraphy or the colour and
intensity patterns of light from an object being
televised or any other set of symbolic patterns.
They may even be numerical data relating to
some physical quantity such as temperature or
density under observation. A very successful
model of a general communication system, due
to Shannon, may be represented schematically
by the block diagram of Fig, 1,
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Operationally, we may characterise the dif-
ferent elements in this system as follows:

Ignoring all questions concerning the motiva-
tion of the messages, we may regard the func-
tion of the information source is to generate.
seguences of symbols or patterns which con-
stitute the messages. We shall first deal with
discrete sources which use only a discrete set
of symbols like the letters of the alphabet and
then take up continuous sources which produce
continuously wvariable patterns like those of the
speech-waves. The messages ordinarily used in
practice convey a meaning because of the fact
that the symbols used, i.e., the written words,
spcken sounds, etc., are associated with certain
concepts, but we must here make a distinction
between the significant, the symbol and the
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signifie, the entity which is symbolized. In the
development of the t{elecommunication theory,
the semantic aspects of the messages were set
aside as the engineering of communication sys-
tems does not depend upon the meaning of the
messages and much less upon their motivation.
We should thus loock upon messages which com-
munication systems handle as an ensemble of
sequences .of symbols. It is the statistical
rather than the semantical aspects of the mes-
sages that concern us. We are thus led to re-
gard an information source as a stochastic or
a Markoff process generating its messages sym-
bol after symbol.

In electrical communication the original mes-
sage symbols are frequently converted into a
different set of symbols more suitable for trans-
mission over the communication medium or
channel. In telegraphy the letters of the mes-
sage are converted into the sequence of dols
and dashes for signalling according to the Morse
code : in telephony the acoustic wave 1s con-
verted into the corresponding electrical signal.
In the above representation the transmitier
which may involve a human operator thus per-
forms the operation of producing the sequence
of signal symbols at its output from the mes-
sage symbols fed to its inputl. Functionally,
the transmitter is an operator which maps the
message space on the signal space.

The intervening medium between the trans-
mitter and the receiver is called the channel.
The channel may be susceptible to noise in
which case the signal reaching the receiver dif-
fers from the transmitited signal. The noise,
like the message, may be regarded as the out-
put of a stochastic or a Markoff process. For
instance, the noise in a pair of telephone wires
may be due to cross-talk from an adjacent
pair. It may be simply due to the random
thermal motions of the electrons in the circuit
elements. In any event, the effect of noise 1is
to alter the signal in an unpredictable manner
except in a statistical sense. It will be seen
that the ability of a channel to transmit mes-
sages depends upon the band of frequencies it
can transmit (the bandwidth of the channel)
and the level of the signal relative to that of

the noise.

The function of the receiver is to reconstruct
the original message from the received signal
and hence it may be thought of as an inverse
cperator to the transmitter. If the received
signal is badly perturbed by noise, correct re-
construction of the message from the received
signal may not be possible and there remains
gome uncertainty about the original message.
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The destination is obviously the terminating
point for the message and may be a recording
device like a photographic film or a magnetic
tape or even a human sense organ like the ear
or the eye. 1t comes into consideration here
because the resolving power of the terminating
device determines the degree of detail that we
need transmit.

A MEASURE OF INFORMATION

Having described the Dbasic elements of a
generalized communication system we proceed
to develop the fundamental concept of informa-
tion. When we ignore the meaning and look
at the message as the output of a stochastic pro-
cess (as a cryptanalyst does when deciphering
a cryptogram) we Dbegin to notice that the
various symbols of the message (letters, etc.)
are not entirely random but exhibit certain
statistical regularities such as the constant fre-
quencies of the letters, etc. The statistical
properties as defined. for instance, by the prob-
abilities of the occurrence of the different sym-
bols, the transition probabilities between
successive symbols, etc., enable us to define a
quantitative property of the message called the
information content or entropy of the message.
We are certainly not using the word informa-
tion here in an unconventional sense although
we intend to attach a numerical measure to the
information contained in the message. To be
sure, the information content of a message 1Is
net the same thing as its meaning ; meaning or
rather its comprehension has a subjective side
while the information is a measurable quantity
without reference to the meaning of the mes-
sage.

To develop a quantitative measure of infor-
mation consistent with its commonsense usage,
notice that we seek information only when we
are in doubt, which arises when there are a
number of alternatives or choices and we are
uncertain of the outcome of the event. We go
to an enquiry office (rightly called information
office in America) to remove our doubts; we
consult weather forecasts for information whe-
ther it will be rtain or sunshine ., we are, 1in
fact, seeking information (in the form of data)

when we perform experiments whether they
are launching of sputniks or the ftesting of
nuclear weapons. On the other hand, if an

event can happen in only one way, therc is no
choice or uncertainty about it and no mmformau-
tion is called for either. Obtainimg information
is equivalent to making a choice theroby re-
moving the a priori doubl. Choice, uncertaimty
or doubi and information thus all come to pos
cess the same measure.
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Any written message in English can thus be
regarded as the result of a sequence of differ-
ent choices from the 26 letters of the English
alphabet. It will be convenient to regard the
space between words as a symbol by itself and
consider the alphabet to have 27 letters instead.
We can thus form no more than 27° different
messages of N symbols length. Only a very
tiny fraction of these correspond to the con-
ventional use of English and are thus used In
preference to the others. What 1s more, we can
associate with each message a certain a priori
probability if we have sufficient knowledge of
the statistics of the message symbols, t.e., their
probabilities, etc.

How much information does a given mes-
sage contain ? First, we need a unit to measursa
information and then the probability measure
of the message. The most elementary type of
choice we have is the choice between two
equally probable alternatives (e.g., the choice
between the heads and tails in the tossing of
a coin). For reasons which will become more
convincing as we proceed, we shall choose the
logarithm to the base 2 of the number of alter-
natives as the amount of Information H asso-
ciated with the choice so that, in the binary
choice referred to above, we obtain one unit of
information (H=1log,2=1) which is desig-
nated as a bit. If there are N equally probable
alternatives, we obtain H =log, N bits of in-
formation with the specification of any one of
them. In this case since the probability of any
of the alfernatives is p — 1/N, the definition is
equivalent to choosing the negative logarithm
of the probability of the event as the measure
of the information assoclated with the selec-
tion.

The wvarious symbols, however, do not occur
with equal probability (the letter e has the
highest freguency of occurrence, about 13% and
z has the least, about 0-09%). If different
symbols have different probabilities p, (i =
1, 2,....n), and occur independently of each
other, the average amount of information per
symbol (of the event x, say), may e shown
to be given by

H (x) = — 2 p;log. p, bits. (1)

The only requirements imposed by Shannon in
obtaining this measure are that (i) H should
be a continuous function of the ps, (i) when
all the p.s are equal, te., each p, =1/n, it
should be a monotonic increasing function of n,
and (iit) that if the choice be made in suc-
cessive stages, the weighted sum of the indi-
vidual values of H associated with each stage
must be equal to the wvalue of H obtained by
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direct selection. Notice, however, that the ex-
pression (1) can be interpreted as the weight-
ed average of the information obtained with
the selection of each symbol, the weight factor
being the probability p. of the symbol. The
formal resemblance of this expression for the
amcunt of information to the entropy of a
thermodynamical system which can have n
different complexions with probabilities p,
cannot escape notice here. For this reason the
term entropy is frequently used to refer to the
average amount of information associated with
a set of alternatives.

We digress for a short while here to examine
the stochastic character of actual messages.
Shannon and Miller have given striking
demonstrations of how we approach actual
languages by merely choosing successive letters
or words 1ncorporating longer and longer prob-
abilly constraints in their choice (see refer-
ences 1 and 8).

A typical ‘sentence’ of zero-order approxima-
tion is obtained by choosing all the letters with
equal probability and independently :

XFOML RXKHRJFFJUJ ZLPWCFWKCYJ
FFJEYVKCQSGXYD QPAAMKBZAACI-
BZLHJQD

The first order approximation is obtained by
choosing the letters independently but with fre-
quenclies as in English :

OCRO HILI RGWR NMIELWIS EU LL
NBNESEBYA TH EEI ALHENHTTPA
OOBTTVA NAH BRL

The second order approximation incorporates
the transition probabilities between successive
letters and hence has the same digram (i.e..
letter-pair) frequencies as in English :

ON IE ANTSOUTINYS ARE T INCTORE ST
BE § DEAMY ACHIN D ILONASIVE
TUCOOWE AT TEASONARE FUSO TIZIN
ANDY TOBE SEACE CTISBE

The third order approximation ensures correct
trigram structure :

IN NO IST LAT WHEY CRATCIT FROURE
BIRS GROCID PONDENOME OF DEMON-
STURES OF THE REPTAGIN IS REGOA
CTIONA OF CRE

Higher order approximations with letters can-
not be constructed due to lack of statistics re-
garding tetragrams, etc., but Miller, following
Shannoh, used words instead of letters and con-
structed approximations up to the seventh
order.

Zero QOrder : BETWIXT TRUMPETER PEB-
BLY COMPLICATION VIGOROUS TIPPLE
CAREEN OBSCURE ATTRACTIVE CON-

SEQUENCE EXPEDITION PANE UN-
PUNISHED
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First Order: IS TO WENT BIPED THE OF
BEFORE LOVE TURTLEDOVES THE
SPINS AND I QF YARD THAN ASK
WENT GREEK YESTERDAY

Second Order: SUN WAS NICE DORMI-
TORY IS I LIKE CHOCOLATE CAKE BUT
I THINK THAT BOOK IS HE WANTS TO
SCHOQOOIL, THERE

Third Order : FAMILY WAS LARGE DARK
ANIMAL CAME ROARING DOWN THE
MIDDLE OF MY FRIENDS LOVE BOOKS
PASSIONATELY EVERY KISS IS FINE

Fourth Order: WENT TO THE MOVIES
WITH A MAN 1 USED TO GO TOWARDS
THE HARVARD SQUARE IN CAMBRIDGE
IS MAD FUN FOR

Seventh Order: SAID THAT HE WAS
AFRAID OF DOGS MARKED WITH
WHITE SPOTS AND WITH BLACK
SPOTS COVERING IT THE LEOPARD
DID

These were obtained as follows: To obtain
the third order approximation, for instance,
Miller chose the sequence of the first two words
from a text and asked a person to supply the
next word to form a sentence so that the tran-
sition from the first pair of words to the third
takes place as in common English. This word
is noted along, the first word is concealed and
the last two now given to another person and
the next word obtained. The process 1is re-
peated using different persons every time a word
is obtained. The other approximations are con-
structed in a similar manner. The resemblance
to natural English increases at each stage al-
though the messages are not purposive and
motivated and thus strengthens the conviction
that natural languages can be represented by
sufficiently complex stochastic processes.

The examples above show ilhat the first order
approximation which takes only the letter fre-
quencies into account is a rather poor one for
real languages. The expression for the entropy
can, however, be generalised readily to include
constraints between symbols. If the choice of
each letter depends upon the preceding one and
only on that, we can define the entropy per

symbol from digrams of the type 1j as
H=4%4H (xy) >~ - &g;p (i, j) logs p (i,7) (2)

where p(i, j) is the pr;:}bability of the digram
ij or as

H=H,(y) = - 2p (@) 2 0(3) log: 0 (i) (3)
where p,(j) is the transition probability from

the ith symbol to the jth and p(i) is the prob-
ability of the occurrence of the ith symbol,
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The extension to the case where the choice of
a symbol depends upon the preceding n —1
symbols is now obvious, We obtain the average
entropy per symbol by considering the vrobabi-
lity of blocks of n symbols or the transition prob-
abilities from blocks of n — 1 symbols length to
the next one. We may also interpret the rela-
tion (3) as the average entropy of the second
symbol weighted in accordance with the prob-
ability of occurrence of the first. As the infor-
mation obtained is the same as the uncertainty
removed, it also measures how uncertain we
are, on the average, of the next symbol know-
ing the previous one. More generally it is
called the conditional entropy of the second
event ¥y relative to the first event x and 1s
denoted by H_(y). The expression

H (x, y) = — fZ'_IJ (i,7) log, p (1, 37)

may likewise be interpreted as the entropy or
uncertainty of the joint event xy.

SoME PROPERTIES OF THE INFORMATION MEASURE

We shall now exhibit some properties of the
measure of information which support the
claim that the entropy of a set of probabilities
(as defined above) measures the choice or the
uncertainty associated with them in accordance
with our intuitive requirements:

(i) If there are m possible ways an event can
happenn with probabilities p,, Ps....0,, then
the entropy H is a maximum when all the p;8
are equal as may be seen by maximizing H.
This is obviously the most uncertain situation.

(it) H wvanishes when all the p;s are zero
except one which is unity. There is no choice,
no uncertainty and no information either.

(i) It may be shown from our definitions of
H(x). H(x, v), H,_ (y), etc,, that the relations

H (zx,y) <H (x) + H () (4)

H(x,y)=H (x)+ H,(y) =H (y) + H () (35)
and hence

H, (¥) < H{y),

hold good.
The first of these states that the amount

of information (or the unceriainty) of the )joint
event xy is equal to or less than the sum ol
the informations (or the uncertainties) asso-
ciated with the individual events x and y. The
second relation means that the uncertainty of
the joint event xy is cqual 1o or less than the
uncertainty of the event x plus the uncertainty

H, (x) -, H () (6)

of the event y knowing r and vice versa, The
last statement asserts that the uncertainty
H (y) of the event y knowing the event r iy

equal to or less than the uncertainty of
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without a knowledge of x and wice wversa. The
equality obtains when x and y are independent
events.

REDUNDANCY

These considerations regarding the entropy of
a message lead us to the important concept of
redundancy, a knowledge of which enables us
to design suitable codes for transmission of
messages. We have seen that the entropy 1s a
maximum when all the symbols are independ-
ent and cquiprobable. In English language the
maximum entropy per smybol would be
log,27 = 4:76 bits (corresponding to the zero-
order approximation), but the entropies calcu-
lated on the basis of letter, digram and trigram
frequencies turn out to be 4-03, 3:31 and 3-10
bits per symbol. There is evidence that if we
consider censtraints extending over longer
sequences, the entropy reduces down to about
1-5 bits per symbol. The ratio of the actuai
entropy cbtained in a glven message to the
maximum possible entropy is called the rela-
tive entropy and one minus the relative entropy
the redundancy in the message. The farther
the possibilities p;s are removed from the equi-
probable case, the greater is the redundancy,
the extreme case being one in which &ll the p.s
except one are zero. The letter 1 after q is an
example of this extreme case of redundancy.
In English one finds a redundancy of 15% on
the basis of letter frequencies alone and about
30% on the basis of digram frequencies. Con-
sideration of longer sequences leads to redund-
ancies as much as 70% or more. Just as the
entropy measures how uncertain we are on the
average about the outcome of an event, the
redundancy is an average measure of our con-
fidence in the outcome. A highly redundant
source produces less information per symbol
than a less redundant source and conversely to
convey the same information we need the leas{
number of symbols when the alphabet is used
without any redundancy. Redundancy, how-
ever, insures the message against misrepresen-
tation. Any letter after g can always be cor-
rected 23 u. The price we pay for securing
the correct transmission is an increase in the
length of the message and the resulting slower
rate of transmission,

The immediate significance of redundancy to
the telecommunication problem lies in the fact
that some of the redundancy may be removed
in the process of encoding the message into the
signal for transmission. A code is a unique
correspondence between the message symbols
and the signal symbols or between groups of
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them in a one-to-one fashion. There are, how-
ever, cevere restrictions set by noise and the
inevitable delays in encoding on the extent to
which the redundancy in a message can be re-
moved.

RATE OF GENERATION OF INFORMATION AND
CHANNEL CAPACITY

When we realise that the generation of each
of the message symbols requires a finite time,
we can also define the time rate at which infor-
mation is produced by the stochastic process., If
the durations of the different symbols are ¢,
then the average rate of generation of infor-
mation is

H = H/J pt, (7)

t.e., the average entropy per symbol divided by
the average duration of the symbols. The rate
of transmission of information over the chan-
nel 1s likewise determined by the duration t’,
of the channel symbols constituting the signal.
(We are assuming here that the physical pro-
perties of the channel permit the transmission
of the signal symbols at least as fast as they
are produced.) This rate is not necessarily the
maximum possible rate at which information
can be 1iransmitted over the channel with the
given set of channel symbols as these may not
be occurring with the optimal frequencies. The
channel capacity is defined as the maximum
rate at which information can be transmitted
over the channel, given the durations of the
channel symbols and the constraints that must
be cbeyed. This capacity rate of transmission
is to be achieved by suitably assighing the prob-
abilities of the different symbols and their
transitions with due regard to their duration.
One of the basic theorems of communication
theory tells that there exists a code by which
the output of a source producing entropy at the
rate of H bits per symbol can be transmitted

bits/sec.

over a channel of capacity C bits per second

at the maximum possible rate of [(C/H) — €]
symbols per second and ¢ can be made arbi-
trarily small. The emphasis here is on the pos-
sibility of a code by which the information
produced by the source can be transmitted at
the full capacity of the channel. To approach
this limiting value, in general, increasingly long
delays are needed in coding and decoding -as
longer and longer sequences have to be exam-
ined. One simple example of a perfectly match-
ing code may be given : Lef a source produce
the four symbols A, B, C, D with probabilities
1/2, 1/4, 1/8 and 1/8 respectively so that the
entropy works out at 7/4 bits per symbol
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according to (1). A binary (i.e.,, a two-sym-
bol) code can be construed as follows:

Write the original symbols in order of de-
creasing probability and divide them first into
two groups (here A and B, C, D) of equal (or
as nearly equal as possible) probability and
assign 0 to the first and 1 to the second group.
Proceed to subdivide each group and assign
additional binary digits 0 and 1 in the same
way to the subdivisions until each symbol is
given a unique representation as illustrated

below,

Message symbois Signal Symbols
A 0
1st div.

B 10

~_ 2nd div. o
C 110
3rd div. B
D 111

It will be seen that a typical long message in
A, B, C, D will result in producing the chan-
nel symbols 0 and 1 with equal probabilities
so that they carry maximum information. We
must remember that with such ideal coding
which removes all redundancy any error in
transmission cannot be corrected.

Noise IN COMMUNICATION SYSTEMS

To make our discussion realistic we must in-
clude ‘he effect of noise in transmission, which
perturbs the transmitted signal in an unpre-
dictable way. Thus if the transmitter produces
the symbol i at the input to the channel, there
is no certainty that it will be received as i at
the receiver : all that we have are conditional
probabilities p; (j) that if the symbol ¢ is trans-
mitted, it will be perturbed into the symbol j
at the receiving end. If the noise 1s not bad,
the p, (i)s will be nearly unity and all other
p, (j)s will be small, the noiseless case being
the special one for which p, (7> =3,,. There-
fore, when a message 1is received over a noisy
channel there will be some uncertainty of what
the transmitted message was.

How much information is conveyed by each
symbol under these conditions ? Assuming for
simplicity that the input symbols are independ-
ent and further that noise affects each symbol
independently, we can compute the entropy
input per symbol H(x) on the basis of the
probabilities of the input symbols and likewise,
the entropy H(y) of the output symbols. Know-
ing the p, (j)s, which characterise the noise
source, from previous statistics, we can also
compute the conditional entropy which measures

H (y)=—2= p(i)f p, (i) log p, (i)
J

the average uncertainty of transmission. It is
therefore proper to define the actual informa-
tion transmitted over the channel as the re-
ceived information H(y) less the uncertainty
H, (y) in its transmission. Thus the averags
information iransmitted per symbol is H{(y) —
H_(y) or in view of the relation (5), H(x) —
H, (x). The latter expression may be inter-
preted as the amount of information sent less
the uncertainty that remains of the transmitted
message after the message is in hand. To use
such a noisy channel to its capacity we must
maximize H(x) — H (x) by assigning the prob-
abilities p(i) of the input symbols in the opti-
mal way. Roughly speaking, if all the symbols
are of the same duration, those symbols which
are least disturbed by nolse are to be used most
frequently.

CONTINUOUS SYSTEMS

The messages and signals discussed so far use
a discrete alphabet. There are, however, mes-
sages like those due to speech-waves, etc., which
are conventionally regarded as being continuous
and also continuously wvariable. The problem
of developing a measure of the information pro-
duced by such continuous messages may be
approached in two different ways: The mes-
sages constitute an ensemble with a probability
density measure p(x), where x is some statis-
tic such as the pressure amplitude of the dif-
ferent possible speech-wave forms at some fixed
instant. For such continuous distributions
Shannon has formulated the entropy as

H(I):-_—hip(.’r)lugp(.r) dr. (8)

In the continuous case also the entropy pos-
sesses the properties analogous to (1) to (idi)
of the discrete distributions. A particularly
interesting property of the continuous distri-
bution is that if the standard deviation is fixed
at some value ¢, the entropy in (8) has the

maximum value log \/2 7e ¢, when p{r) I1s
gaussian, i.e.,

D (,1:) = rér,& o ¥ (9)

A more practical approach to the entropy
(and the channel capacity) in the continuous
case is based on the fact that in practice there
is a least upper bound W to the f{requencies
produced by any source of information. There
is an important theorem. called the sampling
theorem, which states thatl if a function of time
f(t) contains only Mreguencies between 0 and
W cycles per second, then it is completely
determined by specifying its values (e, the
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ordinates) at discrete points 1/2 W seconds
apart. Thus we need only state a finite num-
ber 2 W of ordinates to specify a function over
one second. Moreover, the accuracy of speci-
(ication need not be greater than the resolving
power of the ultimate destination or the level
of the ambient noise fluctuation to which the
channel may be subject. Thus both the
absciss® and the ordinates of the function can
only assume discrete values. This double
quantization reduces the continuous case in
practice to the discrete case.

CAPACITY OF A Noisy CHANNEL

One of the most important contributions of
modern information theory is the determina-
tion of the maximum possible rate at which
information can be transmitted over a channel
perturbed by white thermal noise of power N.
Thermal noise of power N is characterized by
the fact that its amplitudes are independent
and have the gaussian probability distribution

(9} with standard deviation ¢ = V’I‘_f. There-
fore, the entropy produced by the noise source

in one second is 2W log\/27meN. Given a
signal of power P, to carry maximum informa-
ticn it must also assume a gaussian distribution

with the standard deviation ¢ =+/P. As the
transmitted signal power and the nolse power
add directly during the course of transmission,
the received signal will have the power P + N,
and will also have a gaussian distribution with

c — \/’5-{-1\1. The entropy of the received
signal [corresponding to H(y) in the discrete

case] per second will be 2 W log /2 me(P + N).
The channel capacity C is obtained by sub-
tracting from this the uncertainty due to noise.
Thus

P+ N
C =W lﬂg N
This is known as the Shannon-Hartley Law.
Regarded as an exchange relation between the
channel capacity, bandwidth and signal-to-
noise ratio, it shows what is possible under
ideal conditions.

INFORMATION THEORY (OUTSIDE

TELECOMMUNICATION ENGINEERING

The science of telecommunication abutis on
many scientific disciplines, in particular, lin-
guistics, psychology, neurophysiology and others
not to spzak of its obvious connections with
certain branches of physics like acoustiecs and
statistical mechanics. It stems out of the fact
that in the telecommunication chain, the ulti-

bits/sec. (10)
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mate source of information and the ultimate
destination happen to be nearly always a human
being. We are thus confronted with the prob-
lem of matching the telecommunication chan-
nel to the human channel. The concepts of
telecommunication theory provide valuable
analogies in the field of human communication
and we can ask questions like “How is infor-
mation transmitted in the human being and
what are his capacities as a channel 77 We
have no satisfactory way of answering these
questions yet but these problems are receiving
attention in several fields. Models of commu-
nication in the human being, beginning with
the physical stimulus and ending with the
behavioural response, have been put forward
following the general framework of the fele-
ccmmunication systems. Some recent experi-
mental work by Miller, Licklider, Pierce and
others indicates that human beings cannot prob-
ably take in information at a rate much greater
than about 50 bits per second through the sense
organs like the ear and the eye. The import-
ance of the problem of matching the telecom-
munication and the human channels becomes
obvious when we observe that our present tele-
communication systems utilize channel capaci-
ties several orders of magnitudes greater than
that of the human channel. In the outline that
follows (which necessarily belongs to the con-
trecversial) we can only hope to direct atten-
tion to some of the problems in this sphere.
We must caution, however, that speculative
hypotheses and theorizations which appear fre-
quently in literature should not be mistaken
to have any accepted standing.

[ Curren?

LANGUAGE AND HumAN COMMUNICATION

Communication by speech and writing have
been going through a process of evolufion long
before we could extend their scope by tele-
communication and form, even today, the bulk
of our communicative activity. Speech or
(written) language usually appears as the input
and output of most telecommunication systems
which is but one reason for our interest in
these. Even before the development of infor-
mation theory, a very considerable body of sta-
tistical data regarding the characteristics of
speech and language has been gathered over
a number of years. The growth of telephone
systems following the development of the
vacuum tube initiated systematic investigations
into the physical characteristics of speech. The
needs of the military for secret communication
by codes and for deciphering enemy cryptograms
provided an early incentive for the study of
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the relative frequencies of different letter sym-
bols, digrams, trigrams, etc. With information
theory came the realization that these statisti-
cal data define a measurable property of speech
and language. The point of view has also
emerged that speech and language may them-
selves be regarded as codes for certain concep-
fual entities. The question of what are the
principles which underlie this coding process
has received some attention recently.

The first concern of information theorists
with speech and language has almost always
been to determine the extent of redundancy in
a given message. The proper exploitation of
redundancy offers one of the most hopeful
means of more effective utilization of the chan-
nel capacities. Hence the search for the infor-
mation bearing elements (or shortly ibes) of
speech. The fact that some saving In channel
capacity required to transmit intelligible speech
may be possible was appreciated for some time.
One of the most successful practical atiempts
in this direction was the Bell Telephone Labo-
ratories’ Vocoder which indicates that a band-
width of some 300cps. may be adequate for
intelligible communication as compared with
the nearly 3,000 ¢ps. used in telephony. That
speech is highly redundant has been amply
established by a number of experiments with
speech-waves during the last decade. The in-
telligibility of speech was tested on speech-
sounds, syllables, and words using transmission
systems which distort it in a variety of ways,
e.g., by clipping off the positive and negative
peaks till the wave becomes nearly rectangular,
by interrupting the wave at a rapid rate, etc.
Even when the wave form is severely distorted,
speech retains its intelligibility to a remarkable
degree, indicating the presence of a great deal
of redundancy. This is not surprising as we
already saw that the output of a continuous
source has maximum entropy when 1t corres-
ponds to white noise. It is correct, though un-
complimentary, to say that human speech fails

to be informative to the extent that it falls

short of noise. How much of this redundancy
can be removed and how best the remaining can
be utilized in a given situation are questions
which will continue to engage our attention.

SEMANTIC AND PRAGMATIC QUESTIONS

Following Shannon’s example, information
theory has been developed (as we have done
above) without attention to the meaning of the
messages. This point of view was adequate as
long as one’s problems were strictly confined
to telecommunication systems, but when once
the human terminal is considered, we can no
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longer ignore the semantic and pragmatic prob-
lems involved. Obviously, the use of the con-
cepts of information theory in the semantic and
pragmatic fields. needs both clarification and
caution. As one 1llustration, consider a message
like ‘The sun will rise in the east tomorrow’.
One feels intuitively that the message is highly
redundant because one has no a priori doubt
about the truth of the statement and yet the
statement is not redundant in the same sense
that the letter u is redundant after q. The re.
dundancy here is at the semantic level and not
at the syntactic level as in the case of u after q.
There is evidently a need for a more general
theory of information which includes the mean-
ing of the messages. Bar Hillel and Carnap
have advanced, however, a theory of semantic
information in the limited sense that their theory
takes 1nto account the concepts or the entities
to which the symbols refer. It does not, how-
ever, take into account the meaning of the
messages.

The problem of semantic information is not
entirely separable from the information of the
telecommunication problem, sometimes called
the selective information to distinguish it from
the semantic information. For, if we have the
choice between two languages in which to trans-
mit the same semantic information, we would
naturally prefer to transmit it in the language
which requires the smaller number of bits of
selective information. Following this line of
reasoning, in the course of their studies in
Indian languages from the information theory
point of view, the author and his co-workers
have recently advanced the view that it is pos-
sible to compare the relative efficiencies of dif-
ferent languages for communication of seman-
tic content without reference to its absolute
value. To use a metaphor, translation from one
language to another Is a transformation of the
code which leaves the semantic content, but
not the selective entropy of the code symbols,
invariant. The total number of bits of selective
information contained in semantically equival-
ent materials in different Janguages are thus, in
a sense, the appropriate measures of the efhi-
ciencies with which different languages encode
semantic content into linguistic symbols. A
preliminary comparative study of English and
German languages, considered as alternate
codes for communication of semantic content,
revealed some interesting aspects of the pro-
cess of translation. On counting the number of
bits of information in samples of texts in Eng-
lish and their translations into German, it was
observed that a bil in German 1s senanii il
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equivalent to about 0-82 bits in Enghish., On
the other hand, when translations from Ger-
man to English were examined, one bit 1in Ger-
man was found to be equivalent to 0:-94 bits In
English. A unique ratic may, however, be ob-
tained on the assumption that translation from
one language into another involves a certain
amount of ambiguity which is In the nature of
noise or loss of information and therefore one
uses additional bits of information 1n the lan-
guage of translation to overcome this noise, On
the basis of this assumption one finds that a
bit in English has about the same semantic
value as 1:15 bits in German (which makes
English slightly more efficient) and that each
bit requires an additional 0-065 bits to over-
come the noilse inherent in the process of trans-
lation. Comparative studies in  statistical
aspects of Indian languages from the informa-
tion theory point of view also showed the pos-
sibility of a common telegraph code for the
Indian Janguages. One may go further and
regard the different scripts as different codes
for the same phonetic pattern and thus com-
pare their efficiencies for transcribing from the
verbal to the orthographic form.

INFORMATIONAL AND 'THERMODYNAMIC ENTROPIES

A large part of our scientific activity may be
described, in a sense, as seeking, processing and
using information. A theory of information,
therefore, cannot but be of some significance to
science at least on the philosophical plane.
Brillouin, who has some provoking statements
to make, has explored the relationship between
the thermodynamical entropy of a physical sys-
tem and the amount of information obtaiaed
when the state of the system changes. When an
isolated system is left to itself, according to the
second law of therrmmodynamics, the system can
undergo only those changes which lead to an
increase in 1ts physical entropy or a degrada-
tion of its energy. At best the entropy remains
constant if the change is a reversible one.
Brillouin argues that information can only be
obtained by letting the entropy of the system
increase and the increase in entropy is always
greater than the amount of information ob-
tained.

Consider a system whose initial state could
result, for instance, from any of the W, equally
probable complexions and hence a priori prob-
ability p,=1/W, and initial entiropy S,=
klog W, k being Boltzmann’s constant. As
the system degrades in the course of a natural
change, its final state can result from any of
the W, (>W,), say, equally probable com-
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plexions with probability p, =1/W,, and its
entropy becomes S, = klog W,. The change

in entropy is

Se— S = k 1og, (W/W,) = k log, (p,/ps).

Information theory tells that an observation
which involves a change in the probability from
Py to p, brings log,(p;/p,) bits of information.
We can, however, identify k log, (p,/p,) itself
with the amount of information I (by choosing
a new unit of information) that could possibly
be obtained from the system. Thus
Sl = Sﬂ_I

Brillouin now restates the second law of thermo-
dynamics in a somewhat more generalized form
by saying that “in any transformation of a
closed system, the gquantity entropy minus in-
formation must always increase or may at best
remain constant” and hence argues that infor-
mation can only be obtained from a system by
letting its entropy Iincrease. Notice that every
observation is an irreversible one and hence
involves an increase in the entropy in accord-
ance with the above reasoning. Under the best
of circumstances, the amount of information
obtained is equal to the increase in the entropy
so that in general

AT AS.

Because of the opposite sign of information to
entropy we might make use of information to
decrease the enfropy, but the overall balance
still remains in favour of an increase in the
entropy. Brillouin has seized upon this rela-
tionship to discuss the efficiency of an experi-
mental observation which he defines as the
ratio AI/AS (< 1).

The concept of entropy and the second law
of thermodynamiecs raised in the past many
issues with philosophical implications which are
still being debated. Information theory with its
wide connections gives us-a new opportunity
to re-examine these guestions afresh. Infor-
mation theory is thus more than a theoretical
tool for the evaluation of communication sys-
tems ; it has already come to stay as a way of
thinking about a very wide class of problems.

Literature on information theory is very extensive and
widely scattered. We cite some references which will
enable the reader to pursue his way through this subject.

1. Shannon, C. E,, **A Mathematical Theory of Com-
munication, I & 11, Bell Syst. Teck. four., 1948,
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2C AS REFERENCE NUCLIDE

HERE exist at present three scales of atomic

masses of weights: (i) the absolute scaie
based on the gram, (ii) that defined by taking
the mass of one atom of the nuclide 190 equal
to 16 units (the “Physical scale” of “atomic
masses” or “nuclidic masses”), and (1ii) that
taking the average atomic masses of the isotope
mixture of ‘“natural” oxygen as 16 units (the
“Chemical scale” of “atomic weights”). Of
these, only the last two are in common and
extensive use. The chemical scale is indefinite
to the extent of the variation in the average
atomic mass of oxygen from various natural
sources (some 15 parts per million) resulting
from variations in the relative proportions nf
16Q, 170 and 180,

Recently, proposals for improving this situa-
tion have been made and discussed. The neces-
sity of matching the proper value of the Avo-
gadro number with the mass values employed
arises especially often in the domain of nuclear
chemistry.

Proposals to unite the scales by adopting the
physical scale for chemical atomic weights have
been regarded with disfavour by many chemists
because of the relatively large change, about
275 parts per million, which would have to ve
made in all of the gquantities whose values de-
pend on the size of the mole. There are many
physicochemical data whose precision is greater
than that and whose wvalue would therefore
have to be changed. On the other hand, the
serious consideration which has been given by
chemists {o the proposal of a new unified scale
based on 19F = 19, which would result in a
change of 41 parts per million, indicates that
many chemists would be willing to accept u
unified scale if the atomic weights would not be
changed by more than about this amount. There
are relatively few chemical data bearing such
high precision.

Fortunately, there is a possible scale defini-

tion which, as the basis of a unified scale, would
suit chemists and by which, moreover, physi-
cists would bhenefit greatly.

Evidently, that definition is to be preferred
which allows most nuclidic masses {0 be ex-
pressed with the smallest errors, not only now
but also in the foreseeable future. As is shown
below, this purpose is fulfilled by taking ?2C
as the reference nuclide. The best definition of
the atomic mass unit is, accordingly,

Mass of 12C equals exactly 12 atomic mass
units. The unit defined in this way is 318 parts
per million larger than the present physical mass
unit and 43 parts per million larger than the
present chemical one.

In the mass-spectroscopic determination of
nuclidic masses, the most important substandard
is 12C., Not only do the doubly, triply, and
quadruply charged atomic ions of 12C occur at
integral mass nwmbers so that they can be
paired in doublets with nuclides having mass
numbers 6, 4 and 3 respectively, but—much
more important—no other element besides car-
bonn can be found which forms molecular ions
containing as many atoms of but one kind (up
to 10 and more). Therefore, the scale 12C = 12
would allow many more direct doublet compari-
sons of masses, especially of heavy nuclides,
with the reference nuclide than any other scale.
12-Carhon has the additional advantage that
carbon forms many more hydrides than anyv
other element, so that an easy reference line
for doublets can be produced at almost every
mass number up to A ~120. DMany stabie
nuclides in the mass region 120 << A < 240 can
also be measured in reference to 1=C by pairing
in doublets their doubly charged ions with singly
charged ions of 1°C or of *C _H  {fragments,
Use can then be made of nuclear disintegration
data to obtain accurate masses of many other,
especially unstable nuclides.—Sctence, 20th
June 1958, 127 (3312), 1431.



