366

[Current
Science

THE GENERALIZED DESCRIBING FUNCTION AND ITS APPLICATIONS
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HE technique of the describing function as
a tool of design has been emphasized and
demonstrated by several authors.i-3  Johnsont
has discussed at length the necessary assump-
tions and the accuracy attainable by this
method. Klotter3 has extended this concept to
inciude the case of dynamic non-linearities.
Westt and his colleagues have developed the
idea of dual input describing functions. A trans-
formation method capable of dealing with all
the above caftegories has been developed by the
author.,i-

However, the describing funciion is valid only
in the steady state. Therefore it 1s used as a
design technique to ascertain desirable per-
formance characteristics in the steady state
only. It is Incapable of giving any information
on the transient performance, as it cannot dis-
criminate between different sets of initial con-
ditions. It is well known that initial conditions
play a vital role in non-linear gystems,

The object of this paper is {o extend the
concept of the describing function for purposes
of analysis and synthesis e€ven in the transient
stale. This extended concept may be termed
the generalized describing function or the g.d.f.

With this view, a damped sinusoid like
ae** sin wt, (p >0), has been considered as
the i1nput to the non-linear component. The
important feature of this concept is that the
conventional deseribing function can be gbtained
as a special case of the generalized describing
function as p tends fo zero. 1t is also interest-
ing to notice that the g.d.f. is in the time domain,
and the corresponding Laplace Transform has
to be Used for design in the s-plane. Thus it
is the presence of s in the Transformed g.d.f.
that extends the scope of this function to the
transient state also.

As the nonu-linear component can now be
representeéd by an s-funhction, the effect of the
initial conditions can be accounted for, and the
analysis of the non-linear conirel systemn can
now be carried out on the basis of the T00}
loci with its inherent advantages, The follow-
ing procedure clarifies the sequence of operations
necessary in arriving at the g.d.f. in the
s-domain.

It has been shown In reference 7 that the
characteristic of g static component can bhe re-

presented by an algcbraic equation. Therefore
with reference to Fig. 1, let
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f{x)=br +ex*+dx’, -1 +1 (1)

be the characteristic of the component.
Let
T = ge " gin wt,

p >0, (2)
be the input to the non-linear component,

This expression for x is substituted into the
non-linear characteristic, giving rise 1o the
response ¢of the component ag follows.

m (t) = bae? gin wt + cale ¢

X [2 sin wt - £51'113 wt]

4
10 -. a
Gp—=bpt | * ¥ —
+ dg'e T sin twt 16 sin 3 wt
+ T%sin 5 wt] : (3}

The generalized describing funetion in the
time domain may be defined as the ratio of
terms containing sin wt in the outpaus, to the
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exponentially time varying amplitude of the
sinusoidal input to the non-linear component.
This expression may be denoted by n(t). From
equations (1), (2) and (3), n(ft) may be written
as follows:

gcaze“ﬂﬂf + %g dale—trt,
The justification for the above procedure is
exactly similar to that of the conventional
describing function.

At this stage it may be observed that the
g.d.f. 1s in the time domain, and for p tending
to zero, the conventional describing function is
obtained. Hence the justification in the choice
of the name 'g.d.f.’ to denote this concept. How-
ever, it must be emphasized that the conventional
describing function, being a function of amplitude
and frequency only, may directly be used f{for
a study of the frequency response of the system
containing the non-linear component, Since
the g.d.1I. derived as above 1s an explicit func-
tion of time, the Laplace Transform of the
g.d.f. is necessary for the s-plane study of the
system. Thus the laplace transformed g.d.f.
may be denoted by

n{t) =b + (4)

N (s) = L [n (t)]. (5)
From equations (4) and (5)
b 3 ca* 10 dat*
N(S)HE+ES+2IJ 16 s + 4p° (6)

Even when n(t) has a phase shift with
reference to the input x(t), N(s) may be
expressed as the ratio of two polynomials in s.

It must also be amphasized that the effect
of initial conditions comes into picture only after
obtaining the expression for N(s), and while
working in the s-piane. This restriction is
necessary to preserve the uniqueness of the g.d.f.
in the time domain. The effect of such a
restriction on dynamic non-linear components
requires careful examination,

Figure 2 shows a typical closed loop non-linear
control system. Having derived the expression
for N(s) as per equation (6) Fig. 2 may be
re-drawn as in Fig. 3, which is in the required
form for study in the s-plane.

From equation (6), it may be noticed that in
general N (s) is a ratio of two polynomials in s,
and depends on ¢, p and possibly w. Therefore
the forward transfer function may how Dbe
written as the product N(s) G(s); and the
general equation for the root locus!'? may be
written as

|GH'= 180° - | N,

—

(7)
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Figure 3, along with equations (6) and (7),
brings out the important role of the g.d.f. in the
root locus study of closed loop non-linear con-
trol systems.

As transient performance is of interest only
when steady state stability has been ascertained,
the conventional describing function may first
be used for the frequency response analysis,
This analysis gives an indication of the range
of interest for a and w. At this stage, to reduce
the number of the arbitrary parameters, a, p
and w, it may be logical to fix up the value of
p as a positive numbper p_, comparable to the
inverse of the largest Llime constant of the systenm.
Now equation (7) may be written as

|G (s) H (s) = 180° - | N (py, a, w, 5). (8)

Equation (8) indicates that a modification is
necessary in drawing the root loci based on the
g.d.f. This may be briefly stated as follows:

The conventional root loci are plots of the
variations of the closed loop poles with changes in
open loop gain. Thus the open loop gain is used
as a parameter to be adjusted suitably to yield
relative stability.

While applying the principles of root loci, in
the context of equation (8) it is best to specify
the open loop gain at a particular value, and
obtain the loci with a, the scalar amplitude of
the sinusoidal input to the non-linear component,
as the parameter. Tihe significant values of w
can be obtained from the conventional frequency
response analysis. These values of w give rise
to a family of root loci, on each member of
which a is treated as a parameter. This is possi-
ble since p has already been fixed. Therefore
the relative stability of the system may now
be analysed in terms of a as parameter, and
compensation by means of scalar gain factor
1s also possible.

Further details of constructing the root loci.
possible alternative techniques of transient
analysis along with computer solution of specific
problems will be published elsewhere,
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ISOTOPE SHIFTS AND INTERNAL CONVERSION OF ~-RAYS*
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NVESTIGATION of isotope shifts in energy of

atomic spectral lines provides a too] for study-
ing nuclear charge Jdistribution. Isoiope shifis
due to finite mass of the nucleus are important
1n light elements but become negligible for
atoms of heavy elements. For elements in
medium and heavy mass region, A > 80, isotope
shifts due to non-zero volume of the nucleus,
called volume eifect, become important. It is
the study of this volume effect in isotope shifts
which can be used for investigating properties
like nuclear charge distribution, deformation of
nuclear shape and compressibility of nuclear
matter. In these areas, therefore, measurements
on volume effect in 1sotope shifts will provide
valuable Information, supplementary to the
results obtained from nuclear spectroscopic
studies of nuclear energy levels. Detailed inter-
pretation of volume effect in isotope shifts in
the mass region, where nuclear shape deforma-
tion 1s pronounced, will also 1nvolve considera-
tion of specific nuclear models, which is of great
interest to nuclear physicists.

For a nucleus treated as a point charge, the
potential at a distance r is — Ze?/r. For a finite
nucleus with a certain charge distribution of
radius r,, the potential at » <7, will be different

from this value. The enhergy of an
electron in an orbit which penetrates the
nuclear volume, i.e., s-states and to a slight

degree pg_-state, will be different from that

calculated for a point charge nucleus. The
addition of neutrons to a given nucleus alters
its radius and charge distribution and the effect
of penetration on the position of energy level
of the s-electron is different in different isotopes.
This gives rise fo volume effect in isotope shifts.
On the basis of such considerations, the change

* Based on a Review talk pgiven at Nuclear Physics
Symposium, Madras, in February 1962,

In energy A E, of an s-state electron is obtained
as follows :

&EL‘J‘P(T) [V(T)+§—-:2]dr

where d7 is volume element and P(r), which
1s s-electron density in the neighbourhood of a
point charge in Dirac theory is

2(2p+1) 2Zr |24
T v O (%)

where p = (1 — Z2a2)}  a being the fine-structure
constant,

2, — first Bohr radius and w(0) is the non-
relativistic Schrodinger wave-function at r =0,

AE =T (Z)¢*(0) . Ry

P(r) =

where

F(Z)= 127Ze? (p + 1) 2Z)=H

[ (2p4+1)1%p(20+1)(2p+3) \am

= [(14%) o]
(1P = J' f(r) ree ."ﬁiz_'r

and f(r) is normalized so that f(r) dr=2.
The perturbation energy shift between two
isotopes differing by 3R, in equivalent radius,
t.e., the isotope shift due to volume effect is
then given as follows:

3R,
"_R'_l' .

If nucler are spherical and the nuclear radius
varies as Al3, one gets certain results about
isotope shifts, which are, however, different
from what is actually observed. For even iso-
topes of a given element, for instance, the
addition of successive two neutrons should give
equal shifts. Actually this is not the case.
There are fluctuations in the value of the ratio
of observed to theoretically predicted (on
spherical model) shifts, 8 AEobs./6 AEtn, in isotopes

5AE = 2oF (Z) 4* (0) R,



