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THE DYNAMICAL ORIGIN OF SYMMETRY OF ELEMENTARY PARTICLES
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1. INTRODUCTION

ONE of the most remarkable features of ele-

mentary particles is their multiplet struc-
ture. The simplest such structwe is the
particle-antiparticle pairing with equal mass,
spin, lifetime, etc., but with opposile charge
(and baryon number, hypercharge, etc.). We

proportional to the Clebsch-Gordan coefficients,
But as to which multiplets occur, or as to the
identification of observed particles with irredu-
cible representations, the theory is silent, The
difference between the Sakata and the Gell-
Mann-Ne'eman versions of SU, is a case in
point, A simple-minded suggestion is that the
lowest dimensional representations of the group

relate this regularity to the TCP invariance of
the theory, though in earlier years we would
have considered the regularity to be a conse-
quence of charge conjugation invariance, We
may say that we understand the origin of the
particle-antiparticle symmetry.}

But among the strongly interacting particles
we see multiplets of particles with equal spin
and parity, but only approximately equal mass,
1t is conventional to identify such a multiplet
structure with the manifestation of an inlernal
symmeiry group, the multiplets constituting
irreducible representations of this group. Charge
independence of strong interactions is now well
established, and it is not inconsistent {0 assume
that the deviations from exact charge inde-
pendence are due to the charge dependent
coupling with the radiation field: though 1t is
by no means true that this is the only possible
mechanism of violation of charge independence.
By now it is also well established that there
are regularities in the particle (and resonance)
spectrum which go beyvond charge independence,
in the sense that the multiplets can be further
grouped together fo constitute supermultiplets
with the same spin, parity and baryon number
and comparable masses, which constitute
irreducible representations of the special unitary
group in three dimensions.? In this case the
departures from symmetry are not easily
blamed on a known non-strong interaction, but
have to be ascribed to a *small” part of the
strong interactions themselves.

Al along, the framework was one in which
the symmetry group was *“given”. As long as
the perturbations are neglected, the particles
and resonances are to constitute irreducible
multiplets, with the coupling constants being
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only occur., There are at least two shortcomings
to this point of view : first, it does not tell
which of the “smaller” representations actually

occur and the order of their masses; second,

one has to invoke extraneous considerations 1o
eliminate the triplet (and sextet, etc.) represen-
tations of the unitary group. In view of these,
it is worthwhile to seek a more intimate con-
nection between the symmetry group and the
aynamics of the system.

There 1s another line of develapment which
makes such a connection even more desirable.
In a dynamical scheme, where the particles or
resonances appear in the direet channel of g
two-parti~le scattering process as a result of the
exchange of these and other particles or reso-
nances in the crossed chantnels, there are self-
consistency demands on the number of particles
oY resonances In a multiplet and on the relative
magnitudes of the various coupling constants:
and the multiplets that can be exchanged fto
give an atfractive force are not arbitrary.3 Thus
there is a possibility of seeking a dynamieal
origin of symmetries, sturting from the existence
of (mass-spin-parity degenerate) multiplets of
interacting particles and requiring self-consis-
tency., In addition to the need of self-consis-
tency, in most such attempts to-date, one
Includes other conservation laws, like conser-
vation of baryon number, electric charge, hyper-
charge, ete, As a result of these, with restric-
tion to equal masses of the particles within a
multiplet, the problem of dynamical self-con-
sistency reduces to a set of algebraic non-linear
equations. In case these eguations lead to a
symmetry group, the group comes equipped
with the specific representations furnished by
the interacting multiplets.

Essentially the same, but weaker, equations
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follow from considerations of an enfirely dif-
ferent nature, In this, one again starts from
the existence of (mass-gpin-parity degederate)
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multiplets but extends the identity of their one-
particle properties to particles in interaction by
requiring that the two-point (i.e., one-particle)
propagators of the interacting “particles” be-
Ionging to the multiplet are identical.t No
questions of self-consistency are necessary in
this scheme, but the equations derived by iso-
lating and equating suitable terms in the dif-
ferent propagators serve more or less the same

purpose as the self-consistency equations in’

establishing a dynamical origin of symmetries.
Again, as before, the groups come equipped
with the irreducible representations furnished
by the interacting multiplets,

2. SMUSHKEVICH EQUATIONS FROM FIELD THEORY

Consider three multiplets of inferaciing
particles E, ¥, ¢ with m, n and » members.
Then the dynamical principle of equal pro-
pagators require that

GE, (X —y) = Srr' GE (x — y)
1<r,7r<sm
GFr (X — Y) = 05 G¥ (x — )
1 <s,8"<n
GPha (T = Y) = 850 G (x — ¥)
1 <a e v, (le)
Here G&, Gr, 4? are appropriate Green func-
tions. The essential point is the appearance of
the Kronecker delta on the right-hand side,
and it is a consequence of the requirement that
the propagators be equal for any two members
of the multiplet, since we have the freedom to
redefine the components using any unitary
transformation :

(la)

(1b)

E, (z) > E(x) = ZU Ep(x)  (20)
F,(y) > F, (y) = .Z; W Fo (Y) (2 b)
¢ (f) —> ‘;6’:: (f) = E Vaa’ ﬁ"u' (f) (2 C)

We now assume that there exists a non-vanish-
ing trilinear vertex (Fig. 1) coupling the
particle multiplets E, F, ¢ which is of the form

rs,  (x, v ¢ =9g% I'x,y, § (3)
By isolating the contribution from two-particle
intermediate states (Fig. 2) to the propagators
(1) we get the bilinear relations

pX g%, (’l'f»"‘:l;r*‘ﬁl)l'I - Ay 3”' (4 a)
"N
E 9% (g% )" = By 8,y (4 b)
.7
2 9% (9% )¢ = Cy dgq (4 ¢)

r. 8

It is convenient to introduce a matrix notation
at this point, identifying g¢  as the (r,s) matrix
element of the matrix g% Then we can rewritg

(4) in the form
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FIC, 2

FIGs. 1-2  Fig. 1. The prind ive vertex.
‘The second oider diugrams,

Egﬂ g'-i'ﬂ_ All

2 gttt g* =B, 1
O

Fig. 2.

(5a)
(5b)

tr (97% goot) = C, 8,5, (3¢)
It 1s to be noticed that the unit matrices in
(0a) and (5b) are respectively m X m and
X N.

To proceed further we must appeal to a dia-
grammatic expansion of the propagator. Such
an expansion follows most naturally in a per-
turbation theory: there are, however, some
grounds for believing that the higher order
relations derived by equating these quantities to
have a large range of validity than perturbation
theory itself, In the general case,® when no
two of the multiplets E, I, ¢ are identical the
next irreducible contribution to the propagator

comes from a sixth order diagram (Fig. 3).
These take the form:
X gtgthgYgaghgy = A, (6 a)
ary
%‘9*“ gf gt¥ g2 g*f g = B, 1 (6 b)
nRYy
I tr (9%g*f g7 g2 gf gV = C, 3, (6 ¢)

RY
There are tenth, fourteenth,...order relations

generalizing this structure. The constants
A, B, C in these equations are not independent ;
they are related by

mA, =~nB,»>v(C
mA|-'nB" PC'

(57)
()
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(6 a) and (6b). In addition, there are irredu-
i “\ cible diagrams of fouith order, eighth ﬂrc?er, ete.
:_Lﬁf/ The fourth order diagrams (Fig. 4) give the
/ contributions
a gﬁ gu‘ gﬁ = AE | (3)
ag
1A

%1 tr (g% af g gF) = Ca 8,4 "";i 3 (9)

ral
7’1:17’%// N These relations are not, in general, invarians
a ® 7 4 under the automorphisms (7) but only under

pﬂ}/y the restricted automorphisms
7 g* = 3 V. U g% Ut (10)
u!‘
We shall refer to the relations satisfied by the
coupling matrices in either case as the
F1G. 3 Smushkevich relations.*
: ‘ ) ¥ .
FIG. 3. The sixth arder diagrams 3. SMUSHKEVICH EQUATIONS FROM SELF-
and so on. All these equations including (5} CONSISTENT DYNAMICS

are invariant under the automorphism
g > 2N V,e U gd W+ (7)
‘1!

Considerable simplifications result if two of
the mutiplets are the same, say E=F. In this
case, we could choose ¢ to be hermitian with-
out any essential loss of generality. This implies
that the coupling matrices g¢ could be chozen
hermitian so that we could drop the hermitian
conjugation sign in these equations; (3 a) and
(5 b) are no longer independent, and similarly

(L)

FIG., 4

FiG. 5
Figs. 4-5. Fig, 4. The f{fourth order diagrams.
Fig. 5, Ti.gram illustrating the self-consistency rclation—

Eq. (14)

Essentially the same relations can be deduced
from the self-consistent dynamical model. In
this case, the interaction potential (or the N
function of an N/D method) is due to the
exchange of particles in the crossed channel,
while the wave function of, say, the ¢ particle
viewed as being composed of an E particle an:d

an F particle (an F antiparticle) is to be con-
sidered an eigenfunction of this potential
(correspending to a low-lying bound state).
Equality of the masses within a multiplet
enables us to factorize the wave functioné in
a manner completely analogous to (3):

s = g%, Y (11)
where  is a suitable function of momentum
variables but independent of «, 7, 5. Normali-
zation of the various components of ¢ in (11)
demands :

A Qurﬂ (gura')* I‘ME = a:m’
44

which is equivalent to (4¢) with C;, = 1/]119\.2
Similar relations follow from viewing an E{(¢)
particle as a bound state of an F particle and
a ¢ (E) particle, thus completing the set of equa-
tions (4) or (5).

The potential is again defined in terms of the
coupling constants g¢%,  introduced by (11).
Again, two distinct cases arise depending upon
whether we are considering two identical multi-
plets or all these multiplets being distinct. In
the former case we have a one-particle exchange
contribution to the potential, while in the
second case the potential has only contributions
corresponding to two (or four, six, eight, etc.)
particle exchanges. Continuing to assume the
degeneracy of the masses, we can write down
the factorized forms
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2 gﬁra" (gYy ¢)* 9V g (gBr”:')‘ N
Byr'’
=2 (ﬂB ﬂ7+]rr' (gﬁ'f' g‘r)ﬂ"l N
B
for the scattering of an E particle and an F
particle (an F antiparticle). The requirement
(see Fig. 5) that (11) is an eigenfunction of
(12) leads to the relation®
ﬁ"‘l"z. (gﬁgﬁﬂ‘)rf, (gﬁ'f' gY)e s % v = Ag ﬂurs (13)
v’ 82
where A, is a constant, since the D matrix 1s
diagonal. This may be rewritten
X gf g7+ gt gBt g¥ = A, g%,
8
Ry similar considerations of the wave function
of the E and F particle in terms of the other
two particles we get exactly the same equation.
Combining (14) with (5) we can deduce (6)
with the parameters satisfying (5) and (€')
in the formy
Ay By C;
A, B Cp
For the case of two multiplets being identical,
we have a one-particle exchange potential of

the forms$

(12)

(14)

As.

2 gP. g, N (15)
f

which (see Fig. 6) leads to
SgPgrgf =2xg% (16)
B

which, in turn, leads to (8) and (9) with
Ay _Cay_
A C T

T >
=}>M=>\>.w5

FiG, 6
FiG. 6, Diagram illustrating the derivation of Eq. (18

This cormpletes the devivation of th
Smughkevich equations from dynamical cor
siderations, We shall now seek the conditiot
undey which the Smushkevich equations imp
a symmetry group. We remark here that if i
coupling constants transform as invariant thn
index symbols (generalized Clebsch-Gordi
coefBeients) then we know that these relatio
are all gatisfied automatically, provided the

3
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is only one unique invariant three index symbol
(multiplicity-free coupling); the problem. facing
us 1s to determine the conditions under which
the converse is true.

4., UNITARY SYMMETRY

The simplest case to consider is one in which
m=n= 4/1+» but E£F. In this case, we
can deduce SU, symmetryd with E, F identified
with the self-representations and ¢ with the
adjoint representation of the group, making use
of only (5) which follow, without the use of
any dlagrammatic expansion. To show this,
we note that the maftrices g which according
to (5) satisfy the t{race orthogonality

Ir (g% 9% 1) = Ay 0pq- 1 <aa < n—1

(17)
cann be augmented by a matrix ¢° which
satisfies

tr{g" gt} = A3 8;, O<p<n?—1 (18)

These n* matrices constitute a cormplete set of
n X n matrices and, hence, satisfy the com-
pleteness relation

nt-—1

#Zﬂ g#” (!;"“mr's*',]JIIIL = & Srr’ aaa' (19]
where a s a suitable constant. Hence, in
particular

n?-y

E g&u gf-‘+ = 1
fomp

But we had, from (5),

n¥—1 ,
2 gtg® =
Gem ]

n
This implies
g° g%+ = {E—AI (n--?.—li }l
so that g* is a2 multiple of a unitary matrix.
We now make use of redefinition (2) of the

particles of the multiplet which generates an
automorphism of the type (7). If we now choose

u=t1 w= na -+ (ﬂ?‘?j-lj A, ¢°
then it follows that (20)

9% ~> &V g% W* (21)
with

tr (8%) > Z'Vaq tr (8% W*) =0
according to (18) and (20) But (n?—1)

traceless matrices satisfying (18) can be chosen
to be proportional 1o the (m? —~ 1) generators of
8U, in the n X n representation. We have thus
deduced the SU, invariance of the system with
E, F transforming as the n dimensional
representations of the group and ¢ transiorming
as the (n®-— 1) dimensional adjoint representa-
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tion. Once we have deduced the group structure
we can be assured that the higher order equa-
tions like (6) are automatically satisfied,

For the case of Ex=F, m=n= /14 » the
derivation of unitary symmetry! is more compli-
cated since the automorphisms (10) do not
allow the fransformation of the type (20). To
prove tracelessness, one has to use the fourth
order equations. We use (9) and (5) to deduce

éE tr {[g% gf] [g%, 9F))

— Zi(Cg — ﬁlcl) aau-
From this ecquation, making use of the auto-
morphisms (10) it is possible fo show that the
g* must be traceless and, hence, that the
interaction is invariant under SU_  with the
multiplet E=F and ¢ transforming as the n
dimensional self-representation and the (n? — 1)
dimensional adjoint representation respectively.

These results are of interest in connection
with the recent interest in the existence of
particles belonging to the three-dimensional
representation of SU, and the possible role of
these particles in the realization of SU,; as the
relevant symmetry group. The models {ound
here, in so far as the coupling of these “quarks”
with octets is concerned, are similar tc the con-
structions’ of Zweig and of Gell-Mann for the
E—F case and to the construction of Bacry,
Nuyts and Van Hove for the E = F case.

We must emphasize here that the derivation
of unitary symmetry from the Smushkevich
equations In these two cases involved the
assumption neither of isotopic spin conservation
nor of the electric charge. With proper identifi~
cation of the generators, we deduce the conser-
vdation of 1s0spin and of eleciric charge.?

5. QOCeTET-OCcTET-OCTET COUPLING

Another case of practical interest 1s the
coupling of two identical octets with another
octet in accordance with SU,;. In this case, the
Smushkevich equations by themselves cannot
yield the SU, invariant coupling., But if we
assume that all three multiplels are the same
and if their coupling matrices are completely
antisymmetric (appropriate, for example, fof
the “gauge” coupling of vector mesons), we can
deduce® that the coupling constants constitute
the structure constants of some semi-simple Lie
group with the particles transforming as the
adioint representation ; 1f we further restrict
the set of particles to be irreducible {(i.e., cannot
be separated into mutually non-interacting sub-
multiplets), it must be a simple Lie group, If
we now seek the solution cerresponding to n = 8,
we can single out the simple group SU,. Hence,
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a completely antisymmetric trilinear coupling
of an octet must be SU, invariant? as a con-
secquence of the Smushkevich equationa.
Instead of requiring compiete antisymmetry,
we may substitute other requirements. For
example, by reguiring conservation of isospin
and hypercharge as well as charge conjugation
mvariance in the coupling c¢f two (pseudoscalar)
octets with a (vector) octet we can again
derive unitary symmetry for their coupling.

6. Non-Revativistic Mopers; SU,

So far, our discussion was carried out in a
menner appropriate to a relativistic theory. Bug
the notion of symmetry, the particle exchange
mechanism of generating forces and the notion
of antiparticles, etc., are not restricted to a
relativistic theory. We can, for example, con-
sider a Galilei invariant theory (or even a
Euclidean theory); in this case, the particle-
antiparticle correspondence is not inevitable but
1 consistent with (Galilei or Euclidean
mvariance.ll By a parallel development, we
can again deduce the self-consistency equations
(14) and (16) for the self-consistent dynamical
Smushkevich eguations,

In the case of the Galilei group, the spin is
a more or less independent quantity ; and it is
passible {o consider special kinds of interaction
in which the spin is conserved by itself. By a
natural generalization, it is possible to consider
a theory in which we form multiplets in which
the multiplet Iabels mzy include the spin labels.
We can then ggain deduce, for the m ==
(1 4+ #)2 case a unitary symmetry scheme.
Thus, using a triplet of spin half particles for
the E=F multiplet, we can deduce SU; in-
variance in ihe interaction of these particlss
with a 353-component boson multiplef.12 Since
the SUg transformations treat the spin and the
additional particle label on the same fooling,
the 35-component multiplet will contain particles
with different spins, Gflirsey, Radicati and Pais,
and Sakita have shownl!2 that in such a scheme,
the 35-compconent multiplet breaks up inlo a
nseudoscalar (scalar) octet and a vector
(pseudovector) nonet. The baryon super-
multiplet corresponding to the third rank sym-
metric tensor has 56 components, and breaks
up info a 1/2-+ baryon octet and a 3/2
baryon resonance decuplet. (Incidentally, the
Thomas term arising as a relativistic correction,
or any other spin-orbit force produces auto-
matically a breakdown of this SU, symmetry.)

7. BROKEN SYMMETRY

The particles in nature do not fall into mass
degenerate super-multiplets, the masses are only
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approximately equal. It is true that the mass
deviations from the unitary symmetric limif can
be quantitatively understood in terms of a simple
mass formula, But the question arises as to
how such perturbations of symmetry can be
reconciled with the dynamical scheme we have
been considering. There are two possible ways
in which this can arise : first, the mass devia-
tions that are observed destroy the factoriza-
bility of the potential, wave function, or the
propagator ccntributions; the problem can then
no longer be studied as an algebraic problem.
The other mechanism of symmetry breakdown
is to have all the Smushkevich eqguations
satisfied and yet the solutions not exhibiting a
group structured ; this feature of the solutions
of field equations was emphasized already by
Heisenberg in connection with his theory of
elementary particles. The general symmetry
violation is composed of both kinds.

The symmetry violations of the second type
have been studied only in the special case
m=n—=38; E=F=¢. In this case, one findc®
three solutions : one corresponding to invariance
under SU,; another cne corresponding to a
3-parameter Abelilan group (this is a reducible
case): and a third case in which there 1s no
continuous symmetry group, but all the
amushkevich equations are satisfied. Clearly
more work is needed to understand these cases.
But it appears that for the equal mass casc
these violations of the symmetry are always
large. This is to be contrasted with the case
of the first type of symmetry viclation where
the deviation could be as small as we like.

In case the mass degeneracy within a multiplet
is split by small amounts, we can study the
modifications in a self-consistent theory by
considering the deviations as expanded in terms
of quantities transforming irreducibly under
the symmetry group.t If the coupling trans-
forrns as an invariant plus a small term trans-
forming as an irreducible representation, thn
the Smushkevich equations (5) and (6) have
their right-hand sides replaced by malfirices
transforming as this irreducible representation.
The equations so obtained may not fully specify
the deviations of the coupling from its unitary
symmetry limit. In the scli-consistent dynamical
model the corresponding modification is to aller
the self-consistency relations (14) and (16) by
having a ‘“small”’ arbifrary linear combination
of matrices G= which transform as the specific
irreducible representation added to the matrix
g* on the right-hand side. The structure and
stability of this system has not been investi-
gated in any great detail; but it is possible 1o
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have some kind of symmetry violations preferred
over other Kkinds.

There have been a variety of attempts to
understand the apparent breakdown of the
higher symmetries, say SU,, in terms of a lack
of commutability of the Lorentz group and
internal symmetry group.!3 But to-date, the
results have been disappointing in that within
a reasonable purely group-theoretic scheme of
non-commutability it secmslt impossible to
break the symmetry.

The author wishes to thank R. E. Cutkosky,
H. Leutwyler, M. Peshkin, L. S. O'Raifeartaigh
and K. C. Wali for illuminating discussions.
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