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1. INTRODUCTION

TEPHENSON! has considered the consequences

of defining an elementary particle as a region
of space-time in which the metric signature 1is
+ 4 while outside the elementary particle the
signature is — 2. He concludes that a mass
spectrum for zero-spin particles can be obtained
by using this definition and the Klein-Gordon
equation. Lele and Lagu? have shown that a
similar conclusion can be arrived at by defining
the elementary particle as a region of space-
time in which the metric signature is +4 2, the
metric signature outside the elementary particle
being — 2. In the present paper an attempt
has been made to derive a Fermion (spin 1%
particle) mass spectrum by treating the Dirac
equation in the same way.

92  SPHERICAL WAVE SOLUTIONS OF THE DIRAC
EQUATION

Dirac equation for a free particle is

E['b = (C{I'p -+ ﬁmgﬂz) {[I (1)
where the terms have their usual meanings and

E and p should be taken as operators. This
can also be written as
1d¢ : Y. . My 0 4=yl
. ¥ e =1{, t=4+ =1 (2
Cbt +L=21 nﬁ'}' ax,t;; + [ h ﬁ'lr 4 \ )

The above equation is equivalent to four equa-
tions for the four components of Y. To write
the equations in spherical polar co-ordinates,
we make the following transformations?:

b =t (L+m)F(r)Z7]

fro == —i(l-—m-—l)F(r)Z;ttl (3)
gy = G (r) Z™
by = G (r) 2
where
Zm = dr  +myl (- m)Y (4)
! (2041} ‘ PR im

and Y, are the well-known Spherical Harmo-
nics, The above equations for a free particle,
therefore, reduce to

_ (mec*-E) - dG  (I1+1)
he F 4 dr 4 . G=0 (5)
_and
(—E—moc?) dF  (1-1) . _
he G+afﬁur F = (6)

where 1 =1, 2, 3, ... but not zero.

Because we are interested only im static solu-
tions, the above equations reduce to

_ MaC dG | (1+1) o
g F+ G =0 (7)
and
_ MmoC a¥ (1-1) .
3 G+dr——r F =0 (8)

Let f(r) =7 F(r) and g(r) = r G(r), the equa-
tions (7) and (8) become

-#f+gf+;g=0 (9)
and
~ugr T o tro (10)
where .
My
“= e

Substituting the value of f from (9) in (10),
and similarly substituting the value of g from
(10) in (9), we obtain

df I(l-1)

g (#=+ Lo -ﬁ),- = 0 (11)
and

d2g . l L"I‘l ! '

dr2 (#Jj' (1'-‘347)-) g=0 (12)

These are well-known differential equations
and the solutions are

f=rt2{A 0y 4,0 (67} +BK o a0 (ur)}) (13)
and
g = riid [C;qu;:;(#T‘)+D1Kuu;n; (ur)] (14)

where A, B,, C,, D, are arbitrary constants. I

and K are Modified Bessel Functions of first and

second kind of the order indicated by suffixes.
Hence the spherical wave static solutions of

the Dirac equation for a free particle are
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by = i (L+m)r V2 [ALa g, (u7) |
+BlK:!—1:z}(#T}}ZTﬁ1 ‘
-f;l’-_! = _i(l“mﬂl) T_-lfz [f:li].itl 1/2) (iu"r) \ {15)

+B Kn{! 12y (#T)]Z

s =1 V2 [Cilgry 2, (wT)+ D1K:L+1;2 (uT)] Zy™
y=r 0 [Cllmlgm(#‘r) +D1Ktl+1;21 (#T)]Zlm"'l /

3. Mass QUANTISATION

Following Stephenson we make the imagi-
nary space co-ordinate transformation

r—iv, Yy—-iy, ee—-ig, t—>t1
that is
r—> 4ir, A0, ¢ — ¢ t—t

in the Dirac equation to obtain a condition
which leads to mass quantisation, The equa-
tions (7) and (8), after transformatien, become

mMaC dGI (I—E‘ﬂ

'*TF1+_&?+ 7 G, =0
and
- mg__c Gy A ddF;-l B (i"_f"l") By =0
and their solutions are
£y =L (I+m)r V2 [AJ g1 0 (87} 1
+B,Y g0, (u7)] ZT_
t, = ~i{l-m—-1)r12 [A2J{1—1;2} ()

- (0 6)
+B2Y o1 (wr)] 27

Ex=T" "L 2[C2Jil+le’2] (:”*T)’{"DEYfHUz,(,u?‘)]Z;"‘

64 m‘]""l.rz [CEJ”':'I*'E'# (H.T) I DEY{IH"I{?} (ﬂ‘r)] ZITH-LI

where A,, B,, C,, D, are again arbitrary con-
stants. J and Y are Bessel Functions of first
and second kind of the order indicated by
suffixes.

Thus the wave function of the elementary
particle within a sphere of radius R is given
by (16) while outside the sphere it is given
by (15). To exclude singularities at infinity
in 1 and at the origin in &, we put A, = C;, = (
and B, = D, = 0 respectively. Imposmg the
requirement of continuity at r=R which 1s

(‘z’ijrﬂt = (_gi)r-:}:

and

)., - Q).

or /. or

where R is the radius of the sphere across which
the metric signature changes and 1t =1, 2, 3, 4,
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we find four conditions which are identical in
pairs and hence we get only two conditions,
No specific conditions for mass quantisation
can be obtained unless the value of 1 is fixed.
Taking a simple case, we put 1=1, which is
the lowest possible value of I, and obtain the
two conditions as

tan u.R = -1 for i=1, 2 (17)
and
tan uR = ﬁ;‘m? for i=3.4 (1_3}
The solutions for equation (17) are

iR = 5F o+ (19)

where n is 0, 1, 2, 3, ... and the solutions of
equation (18) can be found by approximate
methods. These reduce to

u,R = T4+ nr for large n. (20)
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4, CONCLUSION

It has been shown for zero-spin particles?
that both real and imaginary time co-ordinate
transformations lead to the same condition for
mass quantisation although the two trans-
formed wave equations become imvariant under
orthogonal and Lorentz transformations
respectively, It can be shown for half-spin
particles considered here, that the conditions
(19) and (20) can again be obtained by consi-

dering the transformation
xr->ixr, Y —> ty. t— it

also,

2 - 12,

It is interesting to note that the solution (19)
is identical with that obtained by Stephenseon
for zero-spin particles. Further the solutions
(19) and (20) lead to mass quantisation inde-
pendently, but are incompatible with each
other. An interpretation of this interesting
result and the invariance of the wave equations
will be discussed later,
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