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TABLE 1
Percentage of a. and 3- forms of BOAA in low
and high BOAA containing L. sativus
seeds and corresponding seedlings

In seeds  In seedlings

Sample % g form B form

No.* BOAA”® as % of s % of
total total

I. BOAA Low
Variety

247 0-20 85.0 96-1
2 0-12 897 63
10 0-235 04+ 3 95+ 8
32 0-25 93+0 83-6
24 0-25 30-4 7.0
13 G-12 90-0 04.7
Average 0-19 92:06 £5-6

B-isvmer =92:06 %
a-15omer = 7+94%

11. BOAA High

B-isomer=95+6%
a-isomer = 4+4%

Variety

S-38 2-23 03-8 85-5
5-90 2+13 973 094-4
5-13 2:13 95.2 94 3
S5-83 2-13 96-1 978
S-102 2-00 v7-7 a8-5
BGT-20) 2-00 g5+7 §7+1
Average 210 5.9 862

R-isomer=96-2%

8-isomer =959 %
a-1somer= 3-87%

a-dsomer= 4-1%

. ‘:amples and analytical data were kindly supplied
by Dr. V. Nagarajan,
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constant, The g-isomer in “high” and “low"”
BOAA-containing  varieties of L. sativus
ranged between 92 and 96% of the total
BOAA, while «-isomer was very low (4-8%)
in the samples studied, The process of germi-
nation did not alter the relative proportions of
- and fj’-isomers.

Thanks are due to Dr. C. Gopalan, Director
of these Laboratories, for his constant interest
in this investigation, and to Dr. P, G. Tulpule
for critically going through the manuscript.
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ON THE FLOW OF A CONDUCTING FLUID_IN A ROTATING STRATGHT PIPE

V. VIDYANIDHI
Department of Applied Mathematics, Andhra University, Waltair

ONSIDER a weakly conducting fluid flowing
through a straight pipe, walls z=x =1,
under the action of a constant pressure gradient
-~ d1[dx in the direction of x-axis. H, is a uni-
form magnetic field imposed along z-axis and
the walls rotate with an angular velocity & about
the same axis. Assuming that the motion i

laminar, the equations of hydromagnetic
motionl in a rotating frame of reference
(stationary relative to the walls) for an

incompressible fluid in terms of the complex
velocity field q(z,t) =u+1t v 1s

od 1 Of7 2
U™ _ g. (1
bt¢2mq pa:c+”bzﬂ mq, (1)
where
' 2H 2
11r=1:iﬁ'21‘:5“92(3&2~'r:¢ﬁ)1.*m—'w""1 . (2)

We assume at t=10, ¢q=0. The motion is
caused by sudden change of pressure gradient

from zero to a constant guantity P at 1t =0.
We represent

1 011
-—;SE—#PH(t) at t = 0,

where H is a Heaviside's unit function,

We seek the solution of (1) subject to the
conditions for no slip at the walls,

q =0 for t >0 at z = + L. (4)
Using the lL.aplace transform technigque, we

(3)

find that the solution g of the transformed
differentiial equation satisfies,

Pch /(s + m + 2iQ)/v g

q — — —- —— ——
s{s +m -+ 2i2) ch /(s + m + 2i2)/v L
[ P
"s(s + m F %@ ()
On inversion and separating real and

imaginary parts, we get
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o - 16PL? _ (nﬂ e _ata)/a mIE
% = U,y + . § Tot exp. { AT 2 +_m)t } {—1) cos (24t + 6) cos 9T, !
(6)
. » 16PLS I Gl } NI-D/2 o WL
P o= P +j=1.2:3’, For exp. { ( aTE m) tt.(~—1) sin (282t + @) cos 5T,
(7)
where
fchel, cos BL: (mchag cos Bz + 2{2shag sin Bz)
_ Pm b + shaeL, sin BL, (mshogz sin Sz — 28¢haz cos B2)} (8)
Ust = 2 T a0 — © 7 {(m® + 452) (chiaL cos? L -+ shia L sin?® AL))
{{chaL cos BL {(mshag sin fz — 28¢chaz cos fz)
L 2PQ  , — shaL sin L (mehaz cos fz + 28shaz sin z)}, (9)
Vst = m? + 4% {(m® + 45£22) (ch2ali cos® BL. + sh®eL sin®* SL)}
o ——— 8L2 R . m + 2i2)
r = 4/(a% j2v + 4L2m)* + 64L1 2%, tan 0 = (n-‘-;jﬂ S oF Alim) A at+ I8 = v( -
(10)
For small ¢, we obtain from (D)
3
P _ ; -t ol -
U = 5 Im (1 — e cos 20t) + 24e™™ sin 206 — P“B’ e~™T cos 2827
oo .
(2] + 1)L —z (2§ + 1) L 4 2y ..
jz_‘,'ﬂ (— 1) {erfc YL - erfe e }d-r, (11)
t
o P —ml o3 —_ —_ p™mt ‘f -mT 3
U= gt e sin 20t — 22 (1 — e cos 22t)] - P | e ™ sin 20r
0
oo ﬁ (2§ + 1)L — 2z (25 + 1)L + 2
> (= 1) {e*rfc o + erfe e }d-r. (12)

j=0

The solutions (11, 12) are convergent for all
values of time ¢t For »t < L2 two or three
terms are needed for a four place accuracy, sO
that these are useful in this range and not
merely for smaill values of t. For large vt /1.2,
these solutions are slowly convergent and the
expressions (6,7) are the better.

In the presence of rotation, we find that
secondary motion is set in when the flow is
unsteady, Several of the non-stationary ferms
in (6,7) represent damped oscillations. As
t - oo, the flow is determined by the stationary
conditions u, wv,, glven by (8, 9), When
m=0, we recover the formula in the hydro-
dynamic case2 When @ — o0, such that P/2 %

remains finite, for 0 2<1L,
(13)

Y == %{e“‘ﬂ“” cos B(L — z) —1}. (14)

Similar expressions written for
0=z>—~L. We note from (13) that the

amplitude of v is positive and that the func-
tion sin § (L-2z) can take + ve or — ve values.
For € — o, such that P/2Q is finite, the dis-
turbance is confined to regions of order 1/«
in the vicinity of the walls. Thus we get a
boundary layer at the walls whose thickness
is of order ('—r—-2 +P'2 Hy' o ) : and is* less than
v 2pv
that corresponding to the zero magnetic case.

Under the same conditions but t-+0, the
argument of erfc corresponding to j— 0 in the
integrand of (11,12) shows that there exists
a2 boundary layer at the walls whose thickness
is of order 4/#t. Thus in a rapidly rotating
system at t =0, the boundary layer thickness
grows as 4/*t and for t — o, it settles down

to an order of thickness (E + & THy?a )"3
v 2pv
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