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Recent Researches in the Theory of Meromorphic Functions with
Special Reference to the Picard-Borel Theorem.*

Part II.
(Concluded.)

UPPOSE f;, (2) and f; (2) be two rational
functions which are such that the places

at which they take two given values (for simpli-
city take these to be 0 and co) are identical.
(The same order of multiplicity.) Then, it is
easy to see that they are identical except for a
constant. What is the corresponding theorem in
the case of two meromorphic functions ? The
most 1mportant theorems in this connection are
due to Nevanlinna. His first theorem shows
that if for five different ay’s the eguations (1)
fi (@)= ay (2) f5 (2) =ayp. have identical solutions
in z, then the functions are identical. {(The func-
tions are meromorphic.) This is proved as
follows. Letusintroduce the following functions :

27T
my (fuf2) = o [ Nog [fs, fal"t dO.
0

n (r, f1— f3) = the number of zeros of f,= f;
inlzl <<r. N{r fy—f,) being defined as before.
By the method of proof of the first fundamental
theorem it 1s obvious that

T("sfﬂ + T(T:f::) = my (f1, o) + N(r, f; — J2)
> NA(r,f1 — f2). Let the order of T (r, f;) be

greater than that of T (r, f,} for definiteness.
Then 2 T(r,f1) > N(r, fi — f2). Let us denote
the functions corresponding to f, (z) bv N, m, etec.
Then a little e¢onsideration will show that

Nir,fi —f2)> ZN(?‘s dy) — ﬁ(?')- 2T (e, f1) >
XN (r,ap) — N (). But from II, taking g = 5,
BT (r,fi) <K ZN(r,ap)— N (r) 4 0 [log r T (r)].

O ,
Combining the two we obtain Lim —& ;ﬂé’*‘; f1)

< o0, J.both f; and f, are rational functions
and. in that case they are obviously identical.
[It is to be noted that we have not at all assumed
that f; and f, take the values ap with the same
orders of multiplicity. We have merely assumed
that they take it at the same places.]

Next we take up the question of the identity
of two functions if the distribution for four
ap’'s arc the same. The results obtained in this
case are 1n a sense incomplete. Nevanlinna has
proved that in case the functions take the four
values at the same places with the same orders
of wultiplicity then the functions are identical
except In a special case wherein the ay’s are
harmonic and two of them are lacunary values
for both the functions; in that case, the two
functions are connected by a homographic
relation. But no corresponding result in case
the restriction about the same order of multi-
plicity is removed is known. In order to prove
these results we have to prove first of all some

* Abstract of leciures delivered by X, Venkatachaliengar
to the Central College Mathematical Society, Bangalore.

theorems in connection with meromorphic fune-
tions connected by a linear relation and having
two lacunary values. This itself is an important
chapter in the theory which was started by
Borel and developed by Bloch and Nevanlinna, ;
its application to the problems of unicity is due
to Polya.

Before proceeding to the proofs of these results
we mention a few results which are obvious
from the definitions themselves.

W) T p="(rz) =T (rn LEL 1o )

(2) T(r, fy + ) < 2T (r, fo) + T (r,f2) + 0 (1).

(3) T{r,fi f2y < T(r,fy) + T (, £,).

Now Picard’s theorem can be stated in an-
other form. Suppose an integral function does
not take the values 0 and 1; 4., if f = e£1
1 — f = efs where g, and ¢, are integral functions,
then ef1-+ ef2 = 1. Picard’s theorem asserts that
such an equation cannot hold unless when g1
and ¢, are suitable constants. Borel generalised

this result in the following way. Suppose we
L

have a relation of the form 2 ¢y ¢y = 0 where
1

¢y's are integral functions which do not take the
value zero say. Then, if they are lineart{y inde-
pendent, their mutual ratios should be constant.
[If they are not linearly independent it should
be possible to break up the eguation into a
number of equations in each of which the func-
tions that occar are linearly independent. The
result will he true for each of the pnaw equations. ]
In order to prove these results we have to deduce
the second fundamental theorem in a form
deduced by Nevanlinna originally by means of

which he deduced II. The theorem is the
following :
II”. m (r,’]—;; , OO ) = 0 [log r T\r)] [except for
the exceptional intervals. To be always under-
stood].

We give here a new proof by adopting the

method of Ahlfors.

Now
RaETY
A (7) =f P I df. Take
. [1+ 1 f]2]°
log p{(f) = 2 log {f, 0]°L. [f, eo]-1

— 8 log [log [f, 0]*1. (f, 00)=1] & C
where C is such that the total density is unity,
B > 1, s0 that the integral is convergent. Substi-
tuting the values for [f, 0], etc., and simplifying
we have

21
(1) Xr) =%/ | L] 10 LTILETE 49
=/ || [ 70

and
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217 results on the characterisbicdfunctéiﬁns of products
2 - f - ’ » i
{2) 21— f []og.l + [ f1 :l B ab and sums of functions, and writing
T
0

[ T

jﬂﬂ --izjr %—g:, etc. we obtain by II”
2 2 2
27
1 ( 1 -ﬁ Tl(r) g N(Tﬂ 9‘_4)1, m.] + N(T! D'! '-:JG) - N(T-p ]_)g O)
f [ros (171 + 137)] 7 a0
0

y—r
r———

Py + 0 [logr. T(r].

Now D = W ¢ by bs, where W is the Wronskian
= (log 2)-8. [Kis a constant.] of the ¢’s. Writing the N (», Dys in terms of

Utilising this we obtain N(r, ¢ys and N (r, W) we obtain T, (r) =

0 Hog +.C (r)], utilising the hypothesis that the
27T
A7) +K{log 28 _ 1 £ [ 273
= ﬁf [1 + I ] dicts the hypothesls that the t;b’s are not zero.
D
take 0 and oo, also. They should only assume

qﬁ’s do not take the values U oroo. From this it is
2K
! Hence, the tﬁ’s are constants. [A slight genera-

clear that the ¢’s are polymomials which contra-
- lisation is possible, i.e., we can assume 1hat qS’s
Z »
X (lng L4 1/ ) ﬁd@.

| 11 them relatively rarely. [N (r, 0) and N (», o0)
Taking logarithms and utilising the fact that the =0{logr. T (r).]
logarithm of the mean is = the mean of the Now we apply this result to the theorem on
logarithms we obtain unicity mentioned earlier. L and f5 are two
Dy meromorphic functions which take four given
_ f ,3 values ay, @y, Gy and «y .a,t_ Qhe same places with
log A(r)+ (1) >=m (r, T m) - S f log «sevs the same order of multiplicity. Then. we prove
f 2 0 either (1) They avrvardentical or {2) two of these
are lacunary values for both f, and f,, the
[log (f, 0)-1(f, o0)"1] d8. eross-ratio (@) @y a3 ag) = — 1, and f, and’ f, are
f connected by a homographic relation. TLet usg
AsB>1>0, =2m (?‘, 7 Dﬂ)—ﬁlﬂg assume ¢, to be oo,
Qar [If it 18 not so, consider I and L “] '
1 Ji — ny fa — a,
5= J 108,07 [f,a]"* a0, Then
£ ) ' ‘lﬁ?'_-‘;l ‘j-f:?‘=11318
F : - »”
R m(r, T!m ) < log A(r) +0(1) + 18 log [m (r, 0} are Integral functions with the common lacunary

+ m(r, oo)]. Vvalue 0. Eliminating f; and f, we obtain

As log A (r) = 0 [log r T (r)] except in the excep- Zlaz — a3) y + L(ay — a3) oy = 0.
tional intervals we have I1”. [m (r, 0) + Applying Borel's theorem to the six functions
m (r, 90) <{2T (r)). [For the deduction of IT ¢;...., Ps¢s. ... all of which exclude the value 0
from I1” see Nevanlinna’s excellent tract.] and, dividing them into groups in all possible

We state and derive Borel's theorem in a ways, we obtain one of the following types of
slightly different way which is seen to be the alternatives

same after a little reflection. Suppose ¢, gy, ++¢h 1, — a =@ fi— o
be any n integral functions which arc q!]’inea,ﬂ; (1) % == K{const.) (2) = L. I 2

. . — G f — ¥ ¥ —— a
independent (.. their Wronskian is ;f_ 0) and 2 ! f. —a | fi - at . Ja 1
which are connected by the linear relation or (3) — ﬂl = IK. fﬁ "
2¢’”: 1. Then, if they have a common lacu- 2 1 1 2 .

nary value they are all constants. This is proved If (1) is true then in case the functions are not
as follows. For simplicity let us assume that identical both a; and a4 are lacunary values and
n = 3 and the common lacunary value is O. as there cannot be more than two lacunary values
We have g~ @y = £ (a3 — &) and ag— ay= f(ay — o) .*.

. ; ., f £ == 1 or the functions are identical. ~ We can
— {1 - ‘#’1) + by + Py =0. b 4" 43" =0,  write (2) or (3) as fp = 8 (fy) where 8§ is the

&ﬂd tﬁ].# + ¢2# _+_ 963” — 0.

homographic transformation ; say. f, = afy - &.

1 i ) I I T A TN BEap Vo le ¢fy + d
'g; = \|b b ? $s | = D Then either oo, 18 a lacunary value or else ¢ = 0,
5" "}”_:' ‘o : ~ A The latter case is disposed off as (1), .'. o is a

. 1 b, lacunary value, .*. 8 (o0} should also be & lacunary

, ‘;5 ” i value for both., 8 (oo} should be one of the

?ﬁ_&_ . g P three a's or else there would be (lve values which

1 953 has already been disposed oft.  And for the othep

|[','>-9,_

two a’s, S (n) = a obviously. Hence, two of the
-‘-'9‘51 = [let us use the symbol T,(r) for wvalues are fixed points of the hownography and
» D - co and the other « are corresponding points.
(7, da)]. Hence our theorem is completely proved.

Let T (r) be of the greatest order among all the Nevanlinna has proved that il three functiong
characteristic functions that octcur. Using the take three values at the samo places with the
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same orders of multiplicity then at least two of
them should be identical. From our analysis it
is also clear that there do exist functions having
four identical distributions.
FuNceTioNs MEROMORPHIC IN THE UNiT CIRCLE.
Our preceding analysis confines itself to the
distribution of values of a meromorphic function
in the wneighbourhcod of an isolated singularity.
A generalisation of that would be the problem of
distribution of values of a meromorphic function
in the neighbourhood of a line singularity: or
in a slightly more general way we consider the
problem of distribution of a function given to be
meromorphic in a given region (not necessarily
simply connected : and the function need not be
one valued but should be capable of being conti-
nued indefinitely with the exception of only
poles as singularities). In such a case we have
to uniformitise it ; i.e., we shall assume that we
have transformed the region to the area of the
unit-circle. Then our problem is divided into
two. One is the mnature of the polymorphic
function which transforms the region and the
other is that of the distribution of the values of
a meromorphic function in the unit-cirele. The
former does not belong to the subject of the
Jecture. Therefore we take the latter problem
and see how it differs from the earlier case.
The first fundamental theorem is easily seen
to be true in this case also: but the fact that
T (r) - o0 as r —oco is not obviously true. For
all functions which are analytic and bounded in
the unit-circle T (r) is certainly bounded.
Nevanlinna has proved that if T (r) is bounded
then the function is the quotient of two bounded
functions. [It is of course not necessarily bounded. |
The following is a slightly simplified version of
Nevanlinna’s proof. .. T (r) is bounded N (r. 0)
and N (r, c0) are both bounded. Evaluating

,
the integral N (r, 0} = fﬂ(:’ ) dr, and N (r, o)

O

we easily deduce the following; i.e., if ry, 7y, 75,
...... be the absolute values of the roots of
f(z) = 0, in the Unit-circle (multiplicity
being taken into account). We obtain N (1, 0)

1 , .. if N (r, 0)is bounded 2’ (1 —7,,)

1 ?"2 TE 'EER
iB Cﬂﬂvergﬂnt. IJEt' alj azg . & * L be tvhe
Then,

sequence of zeros of f(z). |ay| = m.

we show thet the product f; (&) =[] -
1 l—=zay,

converges uniformly in tz| <<r <{1. This is
easily proved by finding the maximum and mini-

———
A

vy Lyzs » o

z—a |,
mum values of T inl <]ol| <r <z We
have

lal 47 2= | lat—7r
1+ 7r]|al 1l ~az l1—=rlal

From thig, it is easy to show that

_ | 2= ay ”
z [l |1 — zav
converges uniformly in the region considered.

From this we deduce that the same is true of
the product and f; () is a function which is
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bounded and amalytic in the unit-circle. We
similarly form f, (2) with the poles instead of the
zeros of f (z) in the unit-circle. Then it is easily

seen f (x) = ¢ I("’). fi/fa, Wheregb () 1s analytic in
2] < 1. Now consider the circle lz] = »r.
Let A, be the set of points on it for which R () is
non-negative and B, its complement. Then we
determine two functions which are analytic
in|zi<r, say (") (z) and ,(") (z) which “are
such that R yn(") = R () on A, and o on B, and
Ry ()= R (ts) on B, and o on A,. Then in
2] <<7r. i = (") —¢yy("). [We assume that
a suitable imaginary constant is added.] For
a sequence r, —> 1 we determine ¥ and i, simi-

larlty. Then as e i) and e 2(7) are bound-

ed functions by Vitalis theorem {see e.q.,
Bieberbach— Lehrbuch der Funktiinen -Theorie,
Bd. 1] there is a subsequence of (r,) for which
both l,llli?) and 1‘&2{‘*"] converge in |z| <1 to
two functions whose real parts are positive.
Let these functions be f; and s, respectively.
Then we can write f (z) in the form f (z) =

f1 ﬂ_lh
5 _¢3‘- Both the numerator and the deno-
a €

minator are bounded.

We easily see that all other properties which
are derived earlier to II are true for this case
also ; but the theorems on defective values, etc.,

are not true without some other restriction. We
have examples for which T({(r) =0-......

] .
cons [Iug — ] which do exclude any number of

values. A Fuchsian function with parabolic substi-
tutions only, »iz., the function which transforms 3
circular polygon whose sides are arcs orthogonal
to the unit-circle and which touch each other
(on the umit-circle obviously) to the half-plane
has the requsite property. [We omit the proof.
See Nevanlinna, loc. ¢it.] The next point which
needs amendment 1s the second fundamental
theoremm. The definition of the exceptional
intervals needs amendment. Instead of the

dr .

exceptional intervals being such that X o s

I
finite (which 18 obviously meaningless in this

case), we should have naturally 2. f 1dr -

Iy
1

is finite, [Nate that f r-lr
)

T Tis divergent.:l With

this definition of the exceptional intervals the
second fundamental theorem assumes the follow-
ing form in this case:

g
II (g —2) T () < %N(ﬂ ay) — Ny (r) +0

1
[log T(r)] + (1 + €) log - (¢, any constant
> 0)
except in the exceptional intervals,. We see
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therefore that all our theorems, viz,, the theorerns
on defective values, unicity, multiple values, etc.,

rermnain the same provided thet Lim - T(r)
~——log (1 - r)!

== oo, It is already mentioned that in case this is

not truethe theoremsneed not be valid. Many of

our theorems can be amended suitably if T (f)
1

T *r]‘ We shall state and prove ons

such result. ([See Ahlfors, loc. ¢if.] Suppose

. T
Lim (Tl} = P. Then we prove that the total

log 7

=0 | 10g

Y

defect is at most 2 4 1/p. [See Nevanlinna’'s tract
for examples of functions possessing the preceding

property.] Dividing II by T (») we obtain

. 1 .-
(1 —2) << ¢ -2 0 (ay) 4 lf—

, from which the

result is at once apparent.

We close our lecture with one or two slight
observations. There is no necessity for excep-
tional intervals in the case of weromorphic
functions of finite order, viz., in ﬂ&ser% <7 oo for
a definite p. Now for all points which do not
belong to the exceptional intervals

A () <<{T(r)I*. r#. Suppose p is contained
in an exceptional interval (a4, 8). Now TV(r) =
0 [(»2+ 1] obviously [as T () is a convex

increasing function of log r]. And by a slight
change we can adjust the exceptional intervals

in such a way that 2/ f r?*1l dr is finite. Now

I

take an r < p, not belonging to any exceptional
interval. Then

r T
T(r) ~Tp) = [Ty dr<k [re+1ar
P P
Now we can so adjust r, in such a way that
T(r) — T(p) <M (independent of p). Now A(r)

< [T(r}J'{’-[r]*él, But Lim ;I;g(? = oo, ., R <&

[T (r}]a' for some a. ., A{r) < [T (?‘)JBfﬂl‘ some

8.

1 |

S NP < B < ITe) = TR + Tip)

= T(p)+0(1). .*.1log Xp) = 0 [log T(p)].

We close the lectures with the remark that
T (r, I’) is of the same order as T (r, f) except
in the exceptional intervals. This is too apparent
if we put f'=f. f’/f and apply II.

It i1s_to be noted that we have unavoidably
omitted many of the ofther branches of the
subject. For a complete study the following
hooks are recommended : (1) Valiron, JILectures
on the Theory of Integral Functions, (2) Nevan-
linna’s tract, loc. cit. The latter is really a monu-
mental book and also contains the bibliography

til! the year 1929.

Population Problem and Policy in India.

THE first Indian Population Conference was

held at Lucknow on February 3 and 4, under
the auspices of the Indian Institute of Population
Research. A large number of delegates from the
Universities, Provineial Governments and States
attended. The <Lonference was convened by
Dr. Radhakamal Mukerjee.

In his address of welcome to the delegates,
Dr. R. P. Paranjpye. Vice-Chancellor, l.ucknow
University, emphasised the importance of the
question of population in India in its quantitative,
economic and biological aspects as underlying
all sound progress. What the country wants,
he observed, is a healthy vigorous population,
every member of which should have a reasonable
chance of living to a healthy old age and contri-
bute to the general happiness of the people. For
this, an adequate supply of nutritive food and
other conditions of healthy life should be available
to all, and the optimum population of a country
should bhe determincd by reference to these
conditions,

]iln his inaugural address, the Hon’ble Mr,
J. M. (lay, Finance Member. U7.1°, Government,
traced how the pressure of population had been
the motive power behind the innumerable migra-
tions and incursions of the human race from pre-
historic times., In Rurope, we have Italy and

Germany claiming the right to expand with their

overflowing populations into Africa, In  Asia,

we find Japan following a similar policy towards
China. In India itself, the rapid growth of popu-
lation presents a problem serious enough to
demand the earnest thought of her public nien.
At the last census of 1931. the population of the
sub-continent was 352 millions ; it has now in-
creased to at least 370 millions; and unless
some retarding factor impedes its natural progress,
it will probably exceed 400 millions at the next
epumeration in 1941. Indeed, it is not impossible
that India may, before the 20th century ix much
more than half way through, have to support
a population equal to that of (hina. These are
staggering figurcs ; they connote problems of the
first. magnitude for Govermment and for every
{ hinking man,

PProf. Radhakamal Mukerjee, in the course of
his address as convener, discussed at length the
problem of Tadia’s population capacity. Prof.
Mukerjee estimated that India’s present food
shortage was 18.1 billion calovies and the present
number of average men estimated without food
in India, assuming that others obtained their
normal dally rationn, was 6.6 wmijllions. India
had 162 acres of waste lands which might grow
food under an unremitling population pressure,
but this could not inerease the country’s popula-
tion capacity beyond 441 millions of persons.

Reviewing the growth of population in the
country during the last 684 years, Prof. Mukerjee



