LATTICE THERMAL EXPANSION OF LEAD IODIDE LEAD lodide has a structure similar to that of cadmium iodide. Cadmium iodide is hexagonal with a typical 'layer structure', the interatomic forces within the layers being stronger than those perpendicular to the layers; the thermal expansion in a direction parallel to the layers is smaller than that in a perpendicular direction. We have studied the thermal expansion behaviour of lead iodide by the X-ray method. Analar grade PbI_2 powder was used to obtain X-ray photographs at various temperatures from room temperature to 114° C. With filtered copper radiation, seven $CuKa_1a_2$ doublets could be recorded on a flat-plate back-reflection camera. The experimental arrangement and the procedure for the evaluation of lattice parameters were the same as described earlier². The values of the parameters at different temperatures are given in Table I. The lattice parameters at 25° C are $a = 4.5562 \pm 0.0004$ Å and $c = 6.9830 \pm 0.0004$ Å. These values agree well with those given by Swanson et al.3 Table I Lattice parameters of lead iodide | t °C | a Å | c Å | | |---------------|--------|--------|--| |
25.0 | 4.5562 | 6.9830 | | | 64.5 | 4.5428 | 6-9-05 | | | 86-0 | 4.5667 | 6.9964 | | | 10 4·0 | 4.5693 | 7-(017 | | | 114-0 | 4.5717 | 7.0035 | | The data on lattice parameters have been used to evaluate the directional coefficients of thermal expansion $\bar{a}_a = (1/a_{25}) (\Delta a/\Delta t)$ and $\bar{a} = (1/c_{25}) (\Delta c/\Delta t)$ over the range 25–100° C. The values are 36.6 and 32.3 (both in units of 10^{-6} /°C). These values lead to 105.5×10^{-6} /°C as the coefficient of cubical expansion. This value compares well with the values 100.8 and 108.6 (in units of 10^{-6} /°C) reported by Fizeau⁴ and Klemm et al.5. We have also evaluated the coefficients defined by $a_a \equiv (1/a_{25}) (da/dt)$ and $a \equiv (1/c_{25}) (dc/dt)$ at various temperatures. These values are shown in Fig. 1. The temperature variation of these coefficients can be represented by the equations: $$a_c = 26.36 \times 10^{-6} + 16.5 \times 10^{-8} \text{ t}$$ where t is the temperature in °C. Regarding the anisotropy in thermal expansion expansion, it is seen that the thermal expansion coefficient perpendicular to the layer (a_a) , is smaller than that parallel to the layer (a_a) . The anisotropy decreases as the temperature increases and at about 100° C, the two coefficients are nearly equal. If the trend continues, the anisotropy will be reversed at higher temperatures. With our technique, we could not record photographs of a measurable quality at higher temperatures. Fig. 1. Principal coefficients of expansion a_a [O] and a_a [\oplus] of PbI₂. In view of the similarity in the structure of CdI₂ and PbI₂, we expected that the thermal expansion will have similar anisotropy. But at room temperature, the anisotropy in the thermal expansion of PbI₂ is the opposite of that in the case of CdI₂. This, however, is not unusual. Wooster⁶ and Bredig¹ have given examples of crystals with a layer structure having larger expansion coefficients parallel to the layer than perpendicular to the layer. A better understanding of the difference in the anisotropy of thermal expansion of PbI₂ and CdI₂ would be possible only when the elastic constants of these crystals become available. Physics Department, D. B. Sirdeshmukh. Post-Graduate Centre, Warangal (A.P.), and Physics Department, V. T DESHPANDE. Osmania University, Hyderabad-7, December 7, 1971. $[\]alpha_{s} = 15.69 \times 10^{-6} + 26.3 \times 10^{-8} t$ ^{1.} Bredig, M.A., J. Chem. Phys., 1956, 24, 1037. ^{2.} Deshpande, V. T. and Sirdeshmukh, D. B., Acta Cryst., 1961, 14, 355. ^{3.} Swanson, H. E., Gilfrich, N. T. and Ugrinich, G. M., NBS Reports, 1954, p. 3152. ^{4.} Fizeau, H., Comp. Rend., 1867, 64, 314. Klemm, W., Tilk. W. and Mullenheim, S. V., Z. Anorg. Allg. Chem., 1928, 176, 1.