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I DEEM it a. privilege and honour t{o be

able to participate in this session
honouring the memory of late Professor
Raman. Raman belonged to that rapidly
dwindling species of scientists known as
natural phiiosophers, and it is not surpris-
ing therefore that his interests were wide
and far flung. One area to which he devoted
considerable attention was the physics of
crystals, in particular their dynamics. In
this he was in distinguished company
since several other giants like Kinstein,
Debye and Born were also attracted at
one time to the same subject. In this
talk T propose to review certain aspects
of crystal dynamics and in the process
set Raman’'s contribution to this subject
in its proper perspective. Hopefully,
my talk will not only bring back to you
nostalgic memories of those years when
Raman was vigorously propounding his
ideas, but also offer you glimpses of
recent developments of which I can
speak with some familiarity having
personally witnessed them.

In order to appreciate Raman’s work
in the proper historical confext, it 1is
necessary to go back to the turn of the
century. At that time there existed a
lJaw called the Dulong-Petit law based
on classical physics which stated that the
specific heat of a solid must be tempera-
ture independent. However, this was
contradicted by experiments which
showed that specific heat diminished with
temperature and approached zero as
™ 50°K. The failure of the Dulong-

* Talk delivered ut the Symposium entitled *' Pro-
fessor Raman-—Some scientific ideas propounded by
him and the current status of the relevant fields,”
held in Bangalore during November, 1971,

Petit law remained a puzzle for many
years until Einstein appeared on the
scene, IKinstein' assumed as is done in
the derivation of the Dulong-Petit law
that all atoms in the solid vibrate with
the same frequency and independent of
each other. The crystal was thus viewed
as an assembly of isotropie, independent,
harmonic oscillators. Where Einstein
departed from classical theory was in
asserting -<that the average energy of
these oscillators is determined by Planck’s
Iaw rather than by the equipartition law
of classical statistical mechanics. By
introducing the quantum hypothesis,
Einstein was able fto show that indeed
the specific heat of a solid decreased with
temperature and approached zero. While
eminently successful as a theory for
specific heats, Einstein’s picture of the
frequency spectrum of the solid was
clearly too naive. It is difficult fo believe
that all the atoms vibrate with just one
unique frequency and that too inde-
pendent of each other. Einstein himself
realized these limitations but did not
bother to remove them. Soon after-
wards, it was noticed particularly’ by
Nernst and Lindemann, that Einstein's
theory while qualitatively successful
showed certain quantitative deficiencies
especially at very low temperatures. This
led Debye® to speculate around 1912 that
the deficiencies lay in the {requency
spectrum assumed by Einstein. Debye
reasoned that the vibrations of different
atoms must be coupled and that there-
fore the frequency spectrum could " not
consist merely of a single d-function.
Following Rayleigh's carlier work on u
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one-dimensional atomic chain, Debye
tried to construct a mathematical model
for the vibrations of three-dimensional
lattices, in collaboration with the mathe-
matician Haar. The problem proved very
complicated and so Debye made the
ansatz that as a result of the coupling
of the motion of adjacent atoms, the
vibrations are propagated as waves. For
long wavelengths, these waves of atomic
motion are the same as the acoustic
waves that could be set up by externally
coupling the crystal to an ultrasonic
source. Debye further asserted that the
waves of short wavelength were also
propagated in the same fashion as the
acoustic waves, ie., were characterised
by the same velocity as sound. The
crystalline lattice was thus swept away
and its properties replaced by that of an
elastic continuum. This resulted In a
continuous frequency spectrum of the
famous »* type. The different elastic type
vibrational waves were now regarded by
Debye as independent and as equivalent
to oscillators. The enumeration of their
energy levels was then done according
to quantum theory a la Einstein, and
Debye was finally able to obtain the
well-known specific heat formula which
was in better agreement with experi-
ment than that of Einstein.

About the same time when Debye was
trying to improve Einstein’s frequency
spectrum for a solid, Born and von
Kirmin®* were also independently
tackling the problem of vibrations of a
crystal  lattice. They started with
a one-dimensional chain of atoms and
later generalised the results to three-
dimensional lattices. According to these
authors, the normal modes of vibrations
of an infinite crystal can be described 1n
terms of travelling waves. In this respect
there is a certain amount of commonality
with the Debye theory., Where the Born
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theory differs is in that while Debye
analysed these waves by assuming the
solid to be an elastic continuum, Born and
von Kirman took explicit account of the
lattice structure. One important feature
of the Born-von Kirmin theory is that it
applies to an infinite crystal. In the
formal manipulations the infinite crystal
is replaced by a finite crystal which is sub-
jected to special boundary conditions called
cyciic conditions. These are similar to the
box normalization procedures that are em-
ployed for momentum eigenfunctions in
quantum mechanics. In reality, of course,
one does not deal with infinite crystals
or cyclic crystals, but rather with finite
crystals often with arbitrary surfaces.
However, Born argued that for many
purposes, for example, the calculation of
the frequency spectrum and thence the
specific heat, the finite crystal could be
visualized as a cyclic crystal.

Raman appears to have become actively
interested in the vibrations of crystals
in the early forties. Critically evaluating
the preceding theories, he was convinced
that all of them were deficient. He parti-
cularly rejected the notion that the
normal modes could be classified in
terms of iravelling waves, and on this
score objected to the theories of Debye
and Born. A further objection he raised
in regard to the Debye theory was that
short wavelength waves could not have
the same character as elastic waves,
which is a very valid objection. With
regard to Born’s theory, he disputed
particulary the cyclic boundary condi-
tions which in fact were the source of
travelling-wave solutions for the normal
modes. He expressed himself strongly
against the theories of Debye and Born.
For instance, at one place he remarks,
“One of the basic objections to their
method of approaching the specific heat
problem is that since wave motions In-
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volve progressive changes of phase along
the direction of propagation and may
have any frequency assigned to them,
they can neither be treated as normal
modes nor enumerated. The theories of
Debye and Born seek to escape this diffi-
culty by postulating that the number of
wave motions is identical with the num-
ber of degrees of freedom of the system,
while the choice of wavelengths is deter-
mined by still another postulate, e.g., the
so-called postulate of the cyclic lattice
which is claimed to represent the effect
of the external boundary of the crystal.
Since it 1is obviously impossible to
formulate any boundary conditions at the
surface of a crystal, the procedure 1s
clearly artificial”¢. He adds in another
place, “It follows that these theories
(viz., of Born and Debye) are funda-
mentally misconceived and must there-
fore fail together with all their conse-
quencies’t.

While rejecting the theories of Born
and Debye, Raman found himself attracted
to the Einstein theory, particularly its
singular frequency distribution.  He
argued that the frequency spectrum of a
solid was not continuous but discrete,
with, however, more than the single fre-
quency permitted by Einstein. To quote
his own words, “Einstein’s approach to
the problem is fundamentally correct....
His view of a crystal as an assembly of
immense numbers of quantized oscillators
having a common set of vibration fre-
quencies is not only the logical and
correct view of the matter but also
proves itself when fully developed to be
an eminently successful view. It gives
a deep and quantitative insight into the
thermal behaviour of solids™.

To deduce the nature of the frequency
spectrum it is first necessary to describe
the normal modes and here Raman pro-
ceeded as follows® He asserted that in
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a normal mode equivalent atoms in
adjacent cells have the same amplitude
and must either vibrate in phase or out
of phase. Next, to enumerate these
modes, he considered a part of the crystal
called the super cell which is obtained
by translating the unit cell along its
three principal edges and subsequently
completing the parallelopiped. The super
cell thus has eight times the volume of
the unit cell. If p be the number of
atoms in the unit cell then clearly
the super cell will have 8p atoms
and therefore 24p degrees of freedom
associated with it. Following the analogy
of molecules, Raman argued that three
out of the 24p degrees of freedom are
assoclated with translations of the super
cell as a whole. The remaining (24p — 3)
degrees were associated with the normal
modes of vibration which are such that
equivalent atoms in adjacent cells are
either in phase or out of phase. Thus,
according to Raman, the frequency spec-
trum of a solid must essentially be dis-
crete as in Einstein’s theory, and must
consist of (24p —3) {frequencies. In
addition, there is a **-type spectrum in
the low-frequency end associated with
the centre of mass motions of the super
cells in the crystal. Now not all the
(24p — 3) frequencies are distinct.
Crystal symmetry can and does
introduce degeneracies. Thus in diamond
there are only 9 distinct frequencies, and
Raman showed these are associated with
the vibrations of the octahedral and cubic
planes.

It must be pointed out that both in the
Raman theory and in the Born theory,
there are two aspects. The first is the
description and enumeration of the
normal modes and the second is the
actual numerical calculation of normal
mode frequencies. The former problem
is essentially one of formalism while the
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latter depends on the details of the inter-
atomic forces. Here we are mainly con-
cerncd with the former.

In seeking to answer the question as to
which of these theories is correct, one
would naturally turn to experiments.
Indeed Raman himself took a step in this
direction and initiated several investiga-
tions in the scattering of light by crystals.
Figure 1 shows some typical Raman
spectra of diamond—one of Raman’s
favourite subjects—obtained here at
Bangalore by Raman and his associates’.
The characteristic feature is the presence
of sharp lines in the scattered spectrum.
Raman was successfully able to account
for the observed features by starting
with a set of @ basic frequencies and
interpreting the observed lines as due to
fundamentals, overtones, etc., subject, of
course, to selection rules.

Another technique which has often
been employed for the study of vibration
spectra is X-ray scattering. We are aware
that X-ray scattering by perfect crystals,
in which all atoms are stationary, leads
to Bragg reflections. If, however, the
atoms are harmonically vibrating, then
owing to the periodic modulation of the
lattice, one expects extra Bragg reflec-
tions rather akin to the ghosts produced
by gratings with ruling defects. The
additional feature of these extra Bragg
reflections is that the frequency of the
scattered wave is Doppler shifted owing
to the fact that the reflecting planes of
atoms are moving. By observing these
extra Bragg reflections and by measuring
their associated Doppler shifts, it should,
in principle, be possible to get informa-
tian about the vibrational spectra of
solids. The extra scattering of X-rays
cansequent to the thermal agitation of
salids has been investigated by several
workers including Raman himself. The
chief practical difficulty associated with
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these experiments pertains to the
measurement of the Doppler shift of the
scattered rays. This is mainly an experi-
mental difficulty and is connected with
the fact that the shifts are of the order
of 1 in 10°, a spectral resolution impossi-
ble to achieve in the X-ray iregion by
currently known techniques.

In the fifties, thanks to the availability
of intense neutron beams from high flux
reactors, it became possible to achieve
with neutrons what X-rays failed to do.
Now thermal reactors produce copious
supply of neutrons with wavelengths
~1A (which is of the order of inter-
atomic distances in solids). Neutron
beams can therefore be diffracted from
thermal agitations to produce extra Bragg
reflections in exactly the same manner
as X-rays, with the difference that the
assoclated Doppler shift may be conveni-
ently measured since the energy shifts
suffered by the neutron upon scattering
are often ~ 10-100% (unlike in the case
of X-rays). This is the wave interpreta-
tion of the scattering of neutrons by
lattice vibrations. In another sense, it
can be viewed as the neutronic analogue
of Raman scattering. The incident neutron
exchanges energy and momentum with the
quanta of vibrations of the lattice and is
then scattered. As in all radiation scat-
tering experiments, the scattering is
subject to conservation of energy and
momentum.

Figure 2 shows a schematic diagram of
a typical neutron spectrometer. It con-
sists essentially of two crystal spectro-
meters, one to produce a well-defined beam
of moncchromatic neutrons, and another
to energy analyse the scattered beam,
At Trombay we have several neuiron
spectrometers for carrying out such
investigations. They are all indigenously
built, and fully automated to ensure
round-the-clock operation, a necessary
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requirement since data collection is a slow
and time-consuming process. Figure 3

shows typical phonon-induced Bragg
peaks observed using the Trombay
instruments. Figures 4, 5 and 6 show

the dispersion curves of some of the
substances investigated at Trombay®919.
Similar plots for a number of other
crystals have been obtained in labora-
tories elsewhere, and to date dispersion
data is available for over 100 different
crystals of various types ranging from
insulators to metals, and from rare-gas
solids to complex polymers. It would
have been noticed in Figs. 4, 5 and 6 that
curves are shown based on theoretical
calculations made according to the Born
theory. The good agreement between
theory and experiment coupled with the
fact that the spectrum of frequencies is
not discrete as Raman propounded im-
mediately raises two questions: (i) Does
it mean that Born’s theory is correct and

Raman’s theory is wrong ? (ii) If so then
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Schematic drawing cof a typical neutron spectrometer.

how does one explain the line spectrum
obtained by Raman and coworkers in the
light scattering experiments ?

The short answer to the first question
iIs that actually none of the theories is
strictly correct but Born’s theory comes
closest to deseribing the actual situation,
subject to some limitations to be dis-
cussed later, For the present let us
assume the correctness of Born’s theory
and try to understand its relationship to
that of Raman since both are successful
In their own way in explaining certain
experimental results.

To begin, let us consider the frequency
spectrum of a simple solid like argon
which has the fce structure. Figure 7
shows the Brillouin Zone (BZ) which is
a sort of symmetric unit cell of the
reciprocal space associated with the fcc
lattice. One could also view the BZ as
a cell in (crystal) momentum space.
According to Raman, the (24p — 3) fre-

quencies reduce to 4 distinct frequencies
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Fig. 7. Brillouin zone for a fcc lattice.

associated with the vibrations (longi-
tudinal and transverse) of the octahedral
planes and of the cubic planes. The
group velocity associated with these
vibrations would of course be zero. In
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Born's theory where one visualizes the
normal modes in terms of waves, the
distinct wave vectors possible are distri-
buted inside the BZ. Of these, waves
associated with L and X would have
vanishing group velocity and would in
fact correspond to the vibrations of the
type Raman visualized. In other words,
out of the large number of wave-like
normal modes permitted in the Born
theory, Raman’s theory focusses atten-
tion on a selected subset which are
primarily determined by the transla-
tional symmetry of the lattice and are
characterized by vanishing group velocity.
Interestingly, this fact was recognized by
Raman himself''.

With these remarks let us now
examine the f{requency spectrum Iof
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solid argon as determined by the two
theories. Figure & shows this comparison.
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Fic. §. Frequency spectrum of solid argon. In
the top half is shown the spectrum calculated’ accord-
ing to Bora's theory. The arrows indicate the critical
frequencies astociated with vanishing giroup velocity.
1n the bottem half is sketched the frequency spectrum
expected in Raman's thecry.

In the top half is presented the frequency
spectrum for solid argon computed using
Born's theory and using as input data
fcree constants determined from the well-
known Lennard-Jones potential {for
argon!-, {This frequency specirum
incidentally is in good agreement with
that determined from neutron scattering
data.) Particularly to be noticed in (a)
are the kinks (shown by arrows) occur-
ring at certain frequencies. These are
known as van Hove singularities!® and
are assoclated with the wvanishing of
group velocity for the associated modes.
In the lower half of Fig. 8 is sketched
the frequency spectrum as given by
Raman’s theory. This predicts a low
{requency continuum with a’»* behaviour
as in Born’s theory, but in the high fre-
quency region there are 4 discrete fre-
quencies as mentioned earlier, which,
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observe, coincide with the critical
guencles.

The fact that Raman intuitiveiy focussed
attention on the critical frequencies is
rather interesting because these fre-
quencies play an important role in many
contexts including not only the familiar
Raman and iInfrared spectra, but also
superconducting tunnelling experiments,
This aspect is illustrated in Fig. 9. Shown
at the top are the dispersion curves for
lead (a 1cc lattice) as measured by
neutron spectrometry!*. A notable feature
of these results is the somewhat unusual
nature of the dispersion curves, includ-
ing the presence of many modes of zero
group velocity over and abeve those
associated with the points X and L
(which all fce lattices share). These
unusual features are related to the strong
electron-phonon interactions in lead and
are in fact responsible for its relatively
high superconducting transition tem-
perature. Figure 9 b shows the frequency
spectrum as computed using Born's
theory, using as input parameters force
constants deduced from a'>. The fre-
quency spectrum so calculated exhibits
several singularities especially as com-
pared to argon. However, the spectrum
is believed to be a poor one since the
starting force constant model is not able
to provide a good description of the
effects of electron-phonon interactions as
observed in the measured dispersion
curves. Figure 9c¢ shows the ‘measured
frequency spectrum'®. This was obtained
by sampling the frequencies at a large
number of points in the BZ using the
technique of neutron spectrometry. Like
Fig. 9b, this spectrum also shows consi-
derable structure associated with the
van Hove singularities. Figure 9 d shows
a quantity closely related to the fre-
guency spectrum deduced from the tun-
nelling experiments'’. The van Hove

fre-
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singularities deduced from the neutron experiment (- though this is not o:vident
scattering results are all visible in the on the scale shown). Finally, Fig. Qe
spectrum obtained from the tunnelling shows schematically the frequency spec.
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trum as deduced from Raman’s theory.
The latter predicts only 4 distinct fre-
quencies with vanishing group velocities,
and these let us remember are determined
by the symmetry of the structure. The
fact that there are many more modes
with zero group velocity is somewhat
unusual and is related to the electron-
phonon interaction strength as previously
mentioned, These extra critical fre-
quencies are not symmetry determined.
It may be remarked that until about 10
years ago when Walter Kohn'* first drew
attention to the relevance of the electron-
phonon interaction toc vibration spectra,
there was no reason to expect the occur-
rence of such unusual features.

We now address ourselves to the
second question, namely, “How can the
line structure of the Raman spectrum
be explained if the frequency spectrum
is a continuum ?” I shall seek to answer
this question by considering two
examples, namely, (i) ZnS and (1)
diamond. Figure 10 shows the structure
of (cubic) ZnS. It is very similar to
that of diamond except that the atoms
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in the two sublattices are different.
Figure 11 shows the phonon dispersion
curves for ZnS obtained by neutron
spectrometry by the University of
Michigan group!”. Also shown are criti-
cal frequencies of which there are 9
which are symmetry dictated and have
vanishing group velocity. (This is also
the number predicted by Raman’s theory
for this structure. One might actually
count 10 frequencies in ZnS if one takes
account of the LO-TO splitting at the
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zone centre brought about the macro-
scopic electric field. However if a care-
ful study of the g — 0 region is made
taking info account retardation effects,
then one finds only 9 critical frequencies
in ZnS.) The Raman spectrum of ZnS
is shown in Fig, 12. This was obtained
at the DBell Telephone Laboratories by
employing Laser Raman spectroscopy’.
The experiments have been performed
under various conditions, and as in the
early Bangalore experiments, one sees
several lines. These could all in principle
be explained in terms of the wvarious
critical frequencies (including the set of
0 mentioned above). This, of course,
would be analogous to Raman’s original
explanation of the diamond spectrum.
In practice such an interpretation needs
care since ambiguities could arise due to
close proximity of lines, ete.

Finally let us consider the case of dia-
mond itself. Figure 13 shows the dis-
persion curves for diamond as measured
by neutron specrometry at Los Alomos=!
There are 9 critical frequencies asso-
ciated with the points I', X and L. which
are the fregquencies mentioned by Raman
also. TFigure 14 shows a part of the
Raman spectrum of diamond as obtained
here ; also shown is the associated inten-
sity distribution®. The point worthy of
note is that the spectrum is not entirely
a line spectrum but rather a continuum
with, however, strong singular features
superposed. This aspect is better seen
in a more recent Raman spectrum shown
in Fig. 15 which was obtained by Solin
and Ramdas?? using Laser Raman spectro-
scopy. Once again we observe there 1Is
a continuum superposed on which are
the van Hove singularities associated
with the combination spectrum. These
include the singularities arising from the
combination of the 9 critical frequencies

frequencies featuring in Ramans theory.
Table I shows these 9 {frequencies as
measured by neutron spectrometry and
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as deduced bv Solin and Ramdas. (A
similar set was also obtained by Raman
himself but is not shown here. While
Raman’s values are in broad agreement
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Fic. 13. Dispersion c<urves of diamond (After

Warren ef al., reference 21).
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with those shown in Table I, the values
of Solin and Ramdas have a higher
accuracy obtained as they were with
modern techniques.)

TABLE I
Critical frequencies in diamond

T

Frequency (em™')

Symmetry Phonon —_—

point Neutron Optical

r O .e 13321 0-6
TO 1072 26 106956
X L 1184 %21 118515
TA 80732 80716
TO 121037 120615
L LO 12421 37 125215
TA 552116 6635
LA 1036 132 1006 L6

The mystery of the sharp lines seen in
earlier spectra is now clear. They were
mainly the van Hove singularities of the
combinstion spectra, showing up some-
what prominently above a continuous
background, which is always presents.
Indeed a similar situyation obtains with
regard to second order infrared spectrum
also.

Summarising, we see in retrospect that
Raman with the intuitiveness of an
experimentier tended to concentrate on
the symmetry-determined critical fre-
quencies associated with vanishing group
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velocity since these produced the most
important features in the observed Raman
spectra. These critical frequencies are
important in several other contexts also,
for example, in infrared absorption and
in tunnelling experiments. Nevertheless
the critical frequencies considered by
Raman do not exhaust all the possible
critical frequencies (in the modern sense
of that term), and much less the {fre-
quency spectrum. That there are other
frequencies is now clear from the neu-
tron, tunnelling and indeed even the
Raman scaftering experiments. These
other freguencies are accessible to calcu-
lation from Born's theory but not from
Raman’s theory. Even so, the doubts that
Raman expressed concerning Born’s
method of enumerating the normal
modes, and in particular concerning the
application of the so-called cycelic
boundary conditions have some historical
significance. These objections coming
as they did from a person of Raman's
eminence could not be lightly brushed
aside.  The question was carefully
examinred by Lederman?®! and by Peirels®®
and it was concluded that whiie indeed
the normal modes in a finite and 1n an
infinite (or cyclic crystal) are not identi-
cal, the frequency spectra of the two are
practically identicai if the ratio of the
number of atoms on the surface to

those in the bulk is small. Thus
except In special situations where
surface effects are likely to be 1im-
portant, one could safely employ the

simpler (but perhaps somewhat artificial)
picture of a cyelic crystal for describing
the normal modes and thereby enumerat-
ing the frequency spectrum.

It must be emphasized at this point
that notwithstanding the progress made
to date, our understanding of atomic
motions in solids is far from complete.
Undoubtedly the works of FEinstein,
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Debye, Born and Raman represent im-
portant landmarks. Einstein called atten-
tion to the importance of using a quantum
description for the statistical mechanics
of the oscillators. Debye pointed out
that the vibrations of various atoms are
coupled and that the waves (at least the
low {requency ones) have an acoustic
character and therefore lead to a »*-type
of frequency spectrum. Born showed the
way to discussing the dynamics with due
regard to the lattice structure while
Raman focussed attention (particularly
in the context of Raman spectra) on the
symmetry determined set of critical
frequencies associated- with vanishing
group velocities. Of the wvarious
theories, that of Born offers the
most comprehensive scheme of dis-
cussing vibration spectra. However, it
still leaves many things unexplained.
For instance, it is well known that Born’s
theory if applied to solid helium totally
fails in that it predicts imaginary {re-
quencies ! This is closely connected with
the peculiar quantum features of sohid
helium which necessitate totally new
methods?®. At a more mundane level, the
phenomenon of diffusion which is known
to occur in solids simplv does not come
out as a natural consequence of any of
these theories. So also the problem of
molecular reorientation, rotational dif-
fusion, etc., in molecular crystals. Thus,
in spite of the contributions of the giants
of the past, our understanding of the
mysteries of atomic motions in the solid
state is still far from complete. There are
many more secrets to unravel, and in the
words of the poet Robert Frost,

“We dance around in a ring-and suppose
But the secret sits in the middle and

knows.”
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OPTICAL SPECTROSCOPY AND DEVELOPMENT OF
QUANTUM ELECTRONICS

SUDHANSHU S. Jua
Tata Institute of Fundamental Research, Bombay-5

1. INTRODUCTION

WITHIN the limited time at our dis-

posal, it will be iImpossible to do
justice 1n taiking about even a small
part of the research work done by Pro-
fessor C. V. Raman, who was the greatest
experimental physicist India has produced
so far. In spite of this constraint we will
make an effort to discuss the impact of
some of the pioneering work in optics
done by him and his students on the
modern developments in Quantum
Electronics.

Raman worked in many fields 1in
physics including acoustics, magnetism
and X-rays ; but the study of optical pro-
perties of various materials fascinated
him most. In fact, he was so much
enchanted by ‘“light” and “colour” from
the very beginning (Raman, 1915) that
he spent the later part of his research

career in a massive and detailed experi-
mental investigation of diverse aspects
of the physiology of wvision (Raman,
1968). As a young man when Raman
started doing physics, optical spectroscopy
was one of the most powerful fields of
investigation. It was rapidly producing
new and uhexpected results, and thereby
introducing fundamental changes in the
understanding of physics. It was, there-
fore, no accident that Raman decided to
enrich this exciting field with all his
vigour. It is perhaps significant to add
that he brought with him to optics hig
earlier experience of working on the
propagation of sound waves In matter.
His original contributions to spectroscopy
between the year 1917, when he became
the Palit Professor of Physies in the
Calcutta University, and the year 1948,
when he retired from the Indian Institute
of Science in Bangalore, were pheno-
menal by any standard.



