TABLE				
SI.	Amino acid used	Molecular formula of the derivative with the azide	m p. C	R, Value mm
t.	•	C ₈ H ₈ NO₄Br	198	0.69
∸.	Qlutamic acid	$C_{12}H_{12}O_6NBr$	180	0.95
3.	Asparagine	$C_{11}H_{11}O_aN_2Br$	169	0.72
4.	Lysme	$C_{2\theta}H_{21}O_6N_2Br_2$	169	0.58
5.	Glutamine	$C_{12}H_{13}O_5N_2Br$	165	0.92
6.	Leucino	$C_{13}H_{16}NO_4Br$	158	0.97
7.	Isoleucine	$C_{13}H_{15}NO_4Br$	158	0.84
8.	Methionine	C ₁₂ H ₁₄ NO ₄ SBr	150	0.76
9.	Cystein>	$C_{10}H_{10}NO_4SBr$	138	0.89
10.	Valine	$C_{12}H_{14}NO_4Br$	135	0.71
11.	Alanine	$C_{10}H_{10}NO_4Br$	115	0.76

The present reagent is advantageous as compared to other reagents mentioned in the Literature.

The various amino-acid used in this work were gifted by the Late Dr. Ajai Haksar of the Worecster foundation for experimental Biology, Shrewsbury (U.S.A.). Micro-analyses were kindly carried out at C.D.R.I., Lucknow. The award of a U.G.C. research scholarship and a research grant to one of us (S. S.) is also gratefully acknowledged.

School of Studies in Chemistry, (Miss) S. Saxena. Jiwaji University, Gwalior, C. N. Haksar. April 19, 1978.

- 1. Saxena, S. and Haksar, C. N., J Jiwaji University, 1976 (I), 4, 36.
- 2. and —, *Ibid.*, 1976 (II), 4, 45.
- 3. and —, J. Indian Chem. Soc., 1978, 55, 300.
- 4. Hewitt, J. T., Kenner, J. and Silk, H., J. Chem. Soc., 1904, p. 1228.
- 5. Bondi, S., Z. Physiol. Chem., 1907, 52, 172.

A NOVEL ARRANGEMENT OF VASCULAR TISSUL IN SOME ORCHIDS

The authors in their studies on the root tubers of some orchids of medicinal importance, viz., Habenaria genus encountered a characteristic novel arrangement of vascular tissue hitherto unreported in the literature.

The thick distal regions of the tubers of *H. edge-worthii* Hook. f. and *H. marginata* Colebr. showed a typical condition with 8-19 steles in former (Fig. 1) and 6-9 in the latter, arranged in a ring and each stele

Fig. 1. A t.s. through distal portion of root tuber (diagrammatic), \times 25. (*Epi.*, Epiblema; Cort., Contex; Hr., Hair; Sc., Secretion canal; Ste., Stele)

F/7. 2. Details of a portion of Fig. 1 showing tetrarch condition. \times 270. (Cort., Cortex: End., Endodermis; Per., Peridycle; Phl., Phloem; St., Starch grain; Xyl., Xylem).

in itself presents a clear mono- to pentarch condition (Fig. 2). Further in addition to the steles arranged in a ring, 1-8 steles each with mono- to triarch condition in *H. edgeworthii* and a single stele with mono- to diarch condition in *H. marginata* are found distributed within the parenchyma in the central region of the tuber. However, in the slender proximal region a normal stelar structure common to monocots was observed.

Department of Pharmaceutics, V. K. Lal.
Institute of Technology, A. K. Wahl.
Banaras Hindu University, R. L. Khosa.
Varanasi-5, June 27, 1978.