perhaps needed to investigate the reasons for this unusual behaviour. In the meantime it is advisable to use DPP with caution in high-resistance solutions. ## DPASY of Pb and Zn Several substances capable of sorbing onto mercury occur in natural waters. These include fats, grease, oils, surfactants, detergents, and proteins. The sorption effects of these organics may be expected to be more severe in DPASV than in polarography since the hanging mercury drop electrode (HMDE) commonly used in DPASV allows relatively slow sorption process to reach equilibrium. Despite this fact, few workers have enquired as to how sorption would influence the determination and speciation of trace metals in natural waters using DPASV. Fig. 2. Effect of camphor on the DPASV of Pb and Zn. Instrumental parameters; plating time, 2 min at -1.2 V vs. SCE. Stripping conditions; pulse amplitude, 25 mV; scan rate, 2 mV/s. Solution: 10 mL Rideau River water sample + 10 mL 1/1F acetic acid/sodium acetate buffer (pH 3.7) + 5 mL camphor of concentration as indicated on each curve (in mg/L): A, 0; B, 1.0; C, 2.0; D, 10-50; E, 0; F, 1.0; G, 10; H, 20-50. Ionic strength, 0.01 (adjusted with KNO₃). As an example, Figure 2 illustrates the effects of varying concentrations of camphor on the DPASV of Pb and Zn in a sample of Rideau River water. Note that the presence of as low as $10 \,\mu\text{g/ml}$ camphor in the sample causes a 50% decrease in the peak current for both Pb and Zn. There was no change in peak potential. Recently, Brezonik et al.º also observed a decrease in the differential pulse stripping peak current of Cd and Cu in aqueous solutions at pH 3 and 7 in the presence of a number of organic compounds such as agar, starch, Triton-X 100, etc. Two reasons may be advanced for the decrease in i_p : (i) retardation of the chemical steps prior to electron transfer, thereby preventing metal deposition; and (ii) the organic layer may change the reversibility of metal oxidation reaction, thereby lowering i_p . Whatever may be the reason for the decrease in i_p , the present study shows that sorption effects may present serious problems in interpreting DPASV results on natural waters, especially if the water body is organically rich such as eutrophic lakes, marshes and sewage. Department of Chemistry, K. S. Subramanian.* Carleton University, Ottawa, Ontario K1S 5B6, Canada, December 26, 1978. - * Present address: Barringer Magenta Limited, 304 Carlingview Drive, Rexdale, Ontario M9W 5G2, Toronto, Canada. - 1. Ernst, R., Allen, H. E. and Mancy, K. H., Water Res., 1975, 9, 969. - 2. Gardiner, J. and Stiff, M. J., Ibid., 1975, 9, 517. - 3. Batley, G. E. and Florence, T. M., Mar. Chem., 1976, 4, 347. - 4. Lund, W. and Onshus, D., Anal. Chim. Acta, 1976, **£6**, 109. - 5. Abdullah, M. I., Berg, B. R. and Klimek, R., *Ibid.*, 1976, **£4**, 307. - 6. Zur, C. and Ariel, M., Ibid., 1977, EE, 245. - 7. Davison, W., J. Electroanal. Chem., 1978, 87, 395. - 8. Copeland, T. R., Christie, J. H., Skogerboe, R. K. and Osteryoung, R. A., Anal. Chem., 1973, 45, 995. - 9. Brezonik, P. L., Brauner, P. A. and Stumm, W., Water Res., 1976, 10, 605. ## CRYSTALLOGRAPHIC DATA OF PaT₅, UT₆ AND UT₄Cl THREE compounds with chemical formula PaT_5 , UT_5 and UT_4Cl (T = tropolone anion) were synthesized. All the compounds have tetragonal unit cell with lattice parameters a = 9.759 Å, c = 9.46 Å; a = 9.759 Å, c = 9.496 Å and a = 9.695 Å, c = 9.552 Å for PaT_5 , UT_5 and UT_4Cl , respectively. The Bravais lattice for all is primitive. Brown and Rickard¹ reported the formation of PaT₄(OEt) by the reaction involving lithium tropolonate and the tetrakis (tropolonato) protectinium(V) halides in ethanol. The PaT₄(OEt) was also produced when PaT₄ suspended in ethanol underwent atmospheric oxidation. On the basis of these observations they concluded that the preparation of PaT₅ is not possible. In 1975 Bagnall, Brown, Bhandari and others², following their success in getting UT₅², reinvestigated the protectinium(V)-tropolone system and concluded that the previously reported PaT₄(OEt) had been incorrectly characterised and that PaT₄(OEt) was in fact PaT₆². During their preparation of PaT₅ TABLE I Crystallographic data of PaT₅, UT₅ and UT₄Cl | PaT _s | | | UT ₅ | | | U ₄ TCl | | | |----------------------|----------------------|------|---------------------------|-----------------------|------|------------------------|-----------------------|------| | 1/d² obs.
(Å - ²) | 1/d² caic
(Å = ²) | hkl | $1/d^2$ obs. (Å $^{-2}$) | 1/d² calc.
(Å - ²) | hkl | $1/d^2$ obs. (Å -2) | 1/d² calc.
(Å = 2) | hk | | 0.1366 | 0.1365 | 320 | 0.13825 | 0.13886 | 302 | 0.1399 | 0.1399 | 302 | | 0.1467 | 0.14767 | 321 | 0.14837 | 0-14759 | 321 | 0.1703 | 0-1712 | 400 | | 0.1686 | 0.1688 | 400 | 0.16860 | 0.16800 | 400 | 0 · 1753 | 0.1744 | 004 | | 0.1770 | 0.1787 | 004 | 0 · 17703 | 0.17744 | 004 | 0.2512 | 0.2576 | 422 | | 0.2023 | 0.20017 | 331 | 0.20232 | 0-20009 | 331 | 0 · 2799 | 0.2784 | 501 | | 0-2546 | 0.25468 | 422 | 0.25290 | 0.25436 | 422 | 0.3456 | 0.3456 | 401 | | 0.3490 | 0.34672 | 404 | 0.34563 | 0 · 34544 | 404 | 0.4282 | 0.4280 | 620 | | 0.3895 | 0.3887 | 424 | 0.38563 | 0.38736 | 424 | 0.5109 | 0.5118 | 444 | | 0.4704 | 0.4725 | 630 | 0.47039 | 0.47250 | 630 | 0.6710 | 0 6706 | 516 | | 0.5142 | 0.5147 | 444 | 0.51036 | 0.51344 | 444 | 0.7081 | 0.7094 | 554 | | 0.6256 | 0.6255 | 553 | 0.55132 | O·55020 | 515 | 0.7503 | 0.7562 | 218 | | 0.7081 | 0.7038 | 554 | 0.70475 | 0.70244 | 554 | 0.7772 | 0.7776 | 605 | | 0.8279 | 0.8217 | 752 | 0.82277 | 0.82136 | 752 | 0.8683 | 0.8667 | 900 | | 0.9022 | 0.9048 | 009 | 0.89020 | 0.89144 | 824 | 0-9914 | 0.9899 | 319 | | 1.0820 | 1.0833 | 419 | 1-07904 | 1.07826 | 772 | 1 · 0503 | 1.0518 | 914 | | 1-1550 | 1 · 1505 | 1003 | 1.15491 | 1.15250 | 1003 | 1 · 1060 | 1.1007 | 1010 | | 1 - 3420 | 1 · 3455 | 658 | | | | 1.2105 | 1.2189 | 807 | | 1 · 6240 | 1-6295 | 1112 | | | | 1 · 4466 | 1 · 4436 | 767 | | | a = 9.759 Å | | a = 9.759 Å | | | a = 9.695 Å | | | | c = 9.46 Å | | | c = 9.496 Å | | | c = 9.552 Å | | | | P — Tetragonal | | | P — Tetragonal | | | P'-Tetragonal | | | and UT₅ they also obtained UT₄Cl. X-ray powder diffraction results indicate UT₅ to be isostructural with PaT₆ and UT₄Cl isostructural with PaT₄Cl. These being important chelate compounds of Uranium(V) we report here some crystallographic data on PaT₅, UT₅ and UT₄Cl. The crystal structure of all the three compounds was determined by powder method using X-ray diffractometer with filtered copper radiation. All the observed reflections were indexed by the method described by Henry et al.³. The crystallographic results for the compounds PaT_5 , UT_5 and UT_4Cl are given in Table I. The lattice parameters were calculated from higher angle reflections. $1/d^2_{hkl}$ were recalculated from these lattice dimensions and are included in the table for comparison. It is observed that all the compounds are tetragonal with primitive Bravais lattice (indices are mixed). A comparison of structural data of UT_5 and PaT_5 shows that their structures are identical. All the compounds have comparable unit cell dimensions. Department of Chemistry, University of Jodhpur, Jodhpur, and Department of Physics, Institute of Science, Nagpur, December 16, 1978. A. M. Bhandari. A. M. Bhandari. - 1. Brown, D. and Rickard, C. E. F., J. Chem: Soc., 1970, p. 3373, - 2. Bngaall, K. W., Brown, D, Bhahdari, A. M., Lidster, P. and Whittaker, B, J. Chem. Soc. (Dalton) 1975, p. 1249. - 3. Henry, N. F. M., Lipson, H. and Wooster, W. A., The Interpretation of X-ray Diffraction Photographs, McMillon, London, 1961.