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ABSTRACT

In this paper, unsteady laminar flow of a viscous incompressible fluid tf rovgh porous media
in a channel has been discussed. Tie cross-section of the channel is taken as a regular Fexagon,
The flow is initially at rest and it takes place when an arbitrary time varying pressure gradient gs
applied. Exact solution of the differential equation defining tte flow Fas been obtained by using
the technique of Finite Fourier and Laplace transforms. Various flows can be deduced frem tris
for different values of f{7), Effect of porosity on velocity profiles under constant pressure gradient

has been represented by graphs.

1. INTRODUCTION

EVERAL investigators®—® kFave discussed the flow
of fluids through channels of varicus cross-
sections, i.e., rectangle, circle, ellipse, traingle, sector
of a circle, annular sector, etc., but tte flow through
bexagonal channels has not yet been discussed. In
the present paper, the flow trroughk porous media in
a regular hexagonal channel under tre influence of
arbitrary time varying pressure gradient bas been dis-
cussed, Grapls have been drawn to report that
(i} velocity at tte pointg on the axis of the ¢hannel
is maximum, (ii) velccity increases as porosity increases,
(iii) steady state velocity in porous medium is less than
in an ordinary medium (of full porosity), {(iv) tre
time to reach tke steady state in porous medium is
less than tlat in an ordinary medium (of full pc rosity).

2. FORMULATION OF THE PROBLEM

Let us use the rectangular cartesian coordinates
systern (x, v, z) such that z-axis js along the axis of
the channel and tle cross-section ¢f the clanne] is
formed by tle straight lines:
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Tre equations of motion (Almad; and Manvi')
in our case takes up the form
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where w15 the fluid velocity along the axis of the

channel, p, p, 1 and v (==p/p) are the pressure, the den-

sity, the viscosity and the kinematic viscosity of tl ¢

Auid respectively, X is the permeability of the medium

and 1 15 the time,
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Tre initial and boundary conditions are:

(1) 1 <0, u(x,y,£) =0 everywhere in the

ckannel
. (2.3)
(i) 1< 0,u,(x,y,t) =0ontre boundary cf

tke channe] given by (2.1)
Using the non-dimensicnal quantities.
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equaticn (2.2) transforms to
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Under the transformations (2.5), equaticn (2.4) new
become

where K; = K/a® and
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and tke conditions (2.3) become
() » <0, (X, X, X0u ™) == 0 everywrere in the

channel (2.7)
(ii) 7 > 0, #{¥y, %2, X0 7) ™~ 0 at

) = =+ {B)UIR H {3.8}

Xy = (/P and

Xy = & (P,
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Due to the symmetry of moticn about x; =0, x;3 =0
and a4 = 0, we shall consider the motion in the region
x20, x>0 and xy= 0 and accordingly the boun-
dary conditions (2.8) become

(X, X3 X5 T =0 at x, =0,(3022; x,=0,

(3)'/1 and x, = 0, (303 (2.9)
and
3
?'u_ =0 at x; =0, =0 at x; = 0 and
Z‘xl x=
-EE = ( at Ay = 0.,,
02Xy
3. SOLUTION

To solve equation (2.6) under the conditions (2.7)
and (2.9), we shall make use of the following trans-

forms

(i) Finite Fourier Cosine Transform with respect to
x,, defined as

(3)1'?]2
& (P, Xap X2 1) = [ #(xy, Xas Xay 7) €OS Poxyddy
v/
(3.1)
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under tre conditions:
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for r > 0.

(i1) Finite Fourier Cosine Transform with respect 10
x,, defined as
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under the conditions:
2, (p, X2, X, 7) =02t x, =0 and (3172
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and ?u_ =0atx;=0
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(iii) Finite Fourier Cosine Transform with respect

(3)1;2
Eﬂ (F: ar, T) == I ﬁi (P1 d, X3, T) COS Rr Xy dxa

’ (3.3)

Unsteady, Lamiar Fiow of a Viscous Incompressible Fluid

Crirreny
Sctemce

where

_ Cr+1)n
“2(3) 1/ %

under the conditions :
i (p, g x,7) =0 at x, =0 and (3)1/?

ou for ¥ >0
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and
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(iv) Laplace Transform with respect to 7, defined as

oD

W)= [ tlp,qr.n)e’ dr
O
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under the condition :
i, (p,q,r,7) =0 for 7 =0,

[t is to be noted that on account of u being an even

function of xy, x; and x;, the Finite Fourier Sine Trans-
forms will be zero,

Now taking the Finite Fourier Cosine Transforms of
equation (2.6) with respect to x,, x, and x, in succes-
sion, weé obtain

¥y _ (= 1yprar
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Taking the Laplace transform of equation (3.5), we
get

i(s) = (= rasr / ) _
PﬂQﬁ‘Rr (‘f + l'l)
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wr.ere f (s) is the Laplace transform of f(+) and

1
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Inverting the Laplace transform by Convolution theo-
rem,

) (— [)rta+r
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P QR e f(r — ) di
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Inverting the Finite Fourier Cesine Transforms with
respect to x,, x; and xy in succession, we finally obtain

. (D¢ (— 1P+t
(3)3/% P.Q,R,
P=0 g=0 =0

x { je“"f(r-—ﬂ.)dl}

X cos P,x; cos Q x;c08 R, x, (3.9)
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Fic. 1. Velocity plotted against 7 for different ‘ v .

values of K,, at x" = 0, ' =0 and f(7) = C.
Fig, 2, Velocity plotted against »y* for different

4. PARTICULAR CASE : CONSTANT PRESSURE GRADIENT values of 7 and K; at x' = 0, and f(7) = C.

Here f(1) = C, where C is an absolute constant,
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