The two major theories of twentieth century physics—relativity and quantum
theory—were obtained quite differently. The essentials of relativity theory were
formulated in the first decade of this century. But the discovery of quantum theory
spannced three decades and involved many lucky ‘accidents’ like Planck’s hypothesis,
Bohr's atomic theory, de Broglie's hypothesis, Heisenberg’s noncommuting dynamical
variables and Schrédinger’s wave equation. The attempts to unify relativity and quantum
theory again involved many accidents and lucky breaks. The first formularion of a
relativistic wave equation with a standard probability interpretation was made by Dirac
in 1928. But when the physical interpretation of the Dirac equation was finally worked
out, it turned out that the wavefunction was not a Schrodinger wave function but a
Heisenberg operator! It is only in the interaction-free limit that it could be interpreted as a
wavefunction. Dirac assiduously searched for a relativistic Schrédinger equation
describing a composite particle;and it is only in the nineteen seventies that he succeeded in
this search. However, he found this description was inconsistent in the presence of
electromagnetic interaction, and Dirac seems to have abandoned this programme some
time ago. N. Mukunda and his collaborators, including E.C.G. Sudarshan found a way
out of this difficulty. Dirac himself hailed this as a major advance as this appears as the
culmination of the theoretical framework begun by Schrédinger and so successfully
pursued by Dirac. In this article Professor Mukunda traces these exciting developments
and the involvement he and his collaborators have hadin them. He points out that thisis a

framework which should fit into any relativistic system rather than being a specific

theory.
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THE DIRAC EQUATION OF 1928

THE relativistic wave equation for the
electron was discovered by Dirac in 1928!,
Without fear of exaggeration one can say
that it is one of a small number of
fundamental equations on which most of
present day physics rests — the others being
Maxwell’s equations for electromagnetism,
Einstein’s equations for gravitation, the
Schrodinger equation of guantum
mechanics, and the Yang-Mills equations
for non Abelian gauge theones of more
recent vintage.

The Schrodinger equation can rightly be
regarded as the replacement in quantum
mechanics for Newton’s equations of

motion in classical mechanics. It thus sets
the general pattern for description of
dynamical systems in the quantum domain,
and so can be used for any quantum system.
On the other hand the remaining equations
mentioned above are more specific In
content. Thus Maxwell’s equations describe
the behaviour of the electromagnetic field
and the manner in which this field interacts
with other physical systems; Einstein’s
equations accomplish the same things for
gravitation; the Dirac equation gives an
excellent account of the properties and
behaviour of the electron, the u meson and
such other leptons; while the equations of
Yang and Mills are a nontrivial and
beautiful generalization of the structure of



Current Science, January 20, 1982, Vol. 51, No. 2

79

i ——h

L

Maxwell’s equations from Abelian to non
Abelian internal symmetry.

Diracs equation of 1928 was the first
spectacularly successful combination of the
principles of quantum mechanics and of
special relativity. There had been a previous
attempt to combine these principles, and it
had led to the eguation of Klein and
Gordon. Even Niels Bohr had felt that that
equation was quite satisfactory. Dirac
however was convinced that it was not, for
two reasons: it was in conflict with the
probabilistic interpretation of quantum
mechanics, and it did not conform to the
principles of the transformation theory of
quantum mechanics which Dirac himself had
set up. Apart from this, it is interesting to
read his own description of the motivations
and the beginnings of the work leading to his
equation: he started °‘playing with the
equations rather than trying to introduce the
right physical idea. It is my habit that I like
to play about with equations, just looking
for mathematical relations which may be do
not have any physical meaning atall’.... ]
was not trying to solve directly some
physical problem but to look for some pretty
mathematics’. In Dirac’s hands, such
motivations led to profound physical
consequences!

Dirac originally wrote his equation in the
form

zhg—wf-(ca p+ B med) . (1)

The quantities a and f are four-
dimensional hermitian matrices obeying
characteristic algebraic relations, They act
on the wave-function ¥ which is a four-
component column vector, each entry a
function of space and time coordinates. An
equivalent but ‘more relativistic’ notation
expresses the above equation in the form

(v*0, +m)¢y =0 (2)

using matrices * related to the a and f.
Because of the presence of these matrices,
relativistic invariance of the equation leads:

to a specific transformation law for ¢ under
Lorentz transformations: its components go
into linear combinations of themselves
according to the spinor representations of the
Lorentz group. As a natural consequence of
this transformation law, this equation
showed the existence of the intrinsic spin
angular momentum for the electron. 1t also
turned out to be possible to extend the
above equation in a simple way to include
the effect of an external electromagnetic
field: the operator @y of differentiation with
respect to the space-time coordinates x*is to
be replaced by the combination Ou — ie As (x)
where Au (x) 1s a vector potential for the
given external field, so the equation then
reads

(y“(Ou—ie Ay + m) ¢ = Q. (3)

When this was done, on the one hand, the
equation gave automatically the correct
value for the spin magnetic moment of the
electron; and on the other, when A,
represents the Coulomb field of a pmton
the fine structure of the energy levels of the
hydrogen atom came out correctly.

There was one other feature which
initially caused considerable confusion in
the physical interpretation of the equation:
this was the occurrence of negative energy
solutions symmetrically with the positive
energy ones describing the electron, Dirac’s
initial suggestion that these might
correspond to protons was soon shown,
especially through the analysis of Weyl, to
be untenable. Dirac soon found a new inter-
pretation and predicted that these solutions
described "anti electrons’ - particles with the
same mass and spin as the electron, but with
opposite charge?, When these particles were
experimentally detected in 1932, that
became yet another major triumph of
Dirac’s equation.

THE MAJORANA FQUATION--1932

At just about this time, 1n an effort to get
rnd of this ‘problem’, the ltahan physicist
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Majorana constructed a really ingenious
wave equation which had no negative
energy solutions at all’. He did however
rectain two essential features of Dirac’s
equation: the operators 3, appeared only
inearly, and the equation was consistent
with the probability interpretation of
quantum mechanics.

Majoranas equation is usually written
S

(Tou+m) ¥ =0 (4)

In the Dirac case, the essential algebraic
reason for the occurrence of both signs of
the energy is the fact that the matrix v° [the
same as B8 in (1)] has both positive and
negative eigenvalues. Majorana therefore
wanted the matrix I'Vin his equation to be
positive definite. This could however be
accomplished only by allowing the
wave-function ¢ to have infinitely many
independent  components!  Thus
Majorana’s equation 1s the first of the so-
called infinite-component relativistic wave
equations. Moreover, it involves four
matrices I"which are all infinite dimensional
and hermitian, withT" being nonsingular as
well. Under a Lorentz transformation, the
infinite number of components of ¥ go into
linear combinations of themselves in an
irreducible way. The Majorana wave
function thus belongs to an infinite
dimensional irreducible representation of
the Lorentz group, unlike the four
component Dirac wave function. This
‘Majorana’ representation of the Lorentz
group happens also (0 be unitary and it is
remarkable that Majorana was able to
construct such g representation so soon after
the Inauguration of relativistic quantum
mechanics. The systematic study of such
representations of the Lorentz group came
much later, in the work of Dirac,
Hanshchandra and Gel’ fand and Naimark.

There are 1n actual fact two equations of
the form (4) built on two Majorana
representations of the Lorentz group. As a

feature
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consequence of the fact that ¢ has infinitely
many components, (4) turns out to describe
not oneg particle with one mass and spin

valug, but a whole series or tower of particles.

The ‘integer spin’ Majorana equation has
solutions corresponding to particles with
spins G, [, 2,..... but with the unphysical
that the mass decreases
monotonically as the spin increases: mass as

a function of spin turns out to be

m (s) =mol(s +3) (5)

Similarly, the ‘half-integer spin’ equation
yields spin values s = 1/2, 3/2,5/2, ...and
the same unphysical mass-spin relation as
above. For this reason, Majorana’s
equations have remained more or less a
mathematical curiosity.

As mentioned earlier, the negative energy
solutions were avoided by ensuring that I'0
was positive-definite. This however really
applies only to the set of time-like solutions
of (4). It was pointed out in 1948 by
Bargmann that, essentially because all four
matrices I are hermitian, Majorana’s
equations possess light-like and unphysical
space-like solutions as wetl. Thus in effect
Majorana’s construction amounts to
trading negative time-like solutions for
space-like ones. While this circumstance, if
anything, makes the Majorana equations a
little bit more unphysical, the equations
nevertheless do possess a rather intricate
and potentially useful mathematical
structure. A thorough analysis of these
equations and their solutions, from the
viewpoint of the representation theory of
the Poincare group, was made by some of us
sometime ago, and the completeness of the
set of all solutions was also proved4s. This
study showed that, at least 1n a
mathematical sense, there 1S no
iconsistency in including the effect of an
external electromagnetic field in the
Majorana equation much like the passage
in the Dirac case from equation (2) to (3).
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THE NEW DIRAC EQUATION~—1971

We have devoted some space to a
description of the Majorana equations
because their underlying mathematical
structure turns out to be relevant to the new
Dirac equations, to which we now turn.

It has been known for some time, to a
considerable e¢xtent through yet another
picce of work by Diract that the two unitary
*Majorana’ representations of the Lorentz
group, which figure in the wave equations
(4) can be built up in a simple and tractable
way using guantum mechanical ‘position’
and ‘momentum’ operators. Let us consider
two such canonical pairs, that is two
position operators g;, g» and two momenta
p1, P2 obeying the usual quantum
mechanical commutation relations

(6)

We assume of course that these are
hermitian. There i1s an essentially unique
way in which to set up a Hilbert space Hoon
which these relations can be realised
irreducibly. One description of this space,
for instance, is 10 imagine it to consist of
square-integrable wave functions ¢ (g1, q»)
on which the momenta p; act as differential
operators with respect to g,; other descriptions
are of course possible, It now turns out that on
this space a certain unitary representation of the
de Sitter group SO (3,2) can be naturally and
easily constructed. If one writes down all
possible bilinear expressions in the four
operators ¢g;, pj, one has ten independent
symmetric combinations and six
independent antisymmetric ones. But
because of the postulated commutation
relations (6), the latter are quite trivial: each
antisymmetric expression is either zero ora
pure number. The ten symmetric
combinations which survive in fact act as
generators of the unttary S0O(3,2)
representation acting on He. By restricting
oncself to the subgroup of SO0(3,2)
corresponding to Lorentz transformations

[qj: pk] =1 5J]‘

e

on space-time, the subgroup SO(3,1), one
finds that one is dealing in fact with the two
Majorana representations! The Lorentz
transformations require only six independent
symmetric bilinears in g, and p, to generate
them: the remaining four operators are none
other than the ‘matrices’ T’ in Majorana’s
wave equation.

To summarize: the Majorana
representations of the Lorentz group are
most naturally realized in terms of two
quantum mechanical position-momentum
pairs. A simple way to picture the wave
functions of this space is to take them to be
functions of g; and g,: one could have taken
the wave function iy in Majorana’s equation
(4) to be of this kind,-in addition to
depending on the space-time coordinates x*

We now come to Dirac’s new wave
equation, presented in 19717: 1t really stands
‘in between® his equation of 1928 and
Majoranas of 1932, since elements of
structure {rom both sources are combined in
an ingenious fashion, and it can surely be
regarded as yet another beautiful product of
Dirac’s habit of playing with equations!

The new Dirac equation can be written in
the form:

(v*0utm) O =0. (7)

Let us briefly describe the elements that go
into it and the way they are combined. The
v# are the 4 X 4 matrices that are familiar
from the relativistic electron equation (2).
The symbol O denotes a 4-component
column vector whose entries are the four
Hermitian operators g+ g2+ i+ p2 1n that
sequence. So the matrices ¥ act on the
operator column vector (. The wave
function ¥ depends on the space-tune
variables x* and moreover, for each x, Is a
vector lying in the space Ho! Thus the
operator dyacts on the x-dependence of ¢,
while the g’sand p's comprising Qactony by
virtue ol its being o vector in Ho (¢
and p's are operators onfly), Thisnew Dirac
cquation 1s, in actual fact, a sct of four
equations to be obeyed by one quantity ¢
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which is of the same nature as the wave
function in Majorana's wave equations.

Equations (7) are relativistically
invariant. The new Dirac wave-function ¢ is
defined to transform under Lorentz
transformations exactly like the ¢ 1n (4),
i.e.via the Majorana representation. With
respect to this representation of the Lorentz
group 1t transpires that the four-component
operator column vector O behaves as a
spinor just like the ¥ 1n the old Dirac
equation. Thus, all in all, O acting on the
new iy behaves just like the old i under
Lorentz transformations, and this makes
equations (7) relativistically invanant.

It 1s when one searches for the solutions to
(7) that one finds some perhaps unexpected
features. First of all it turns out that if
obeys (7}, it then necessarily obeys the Klein
Gordon equation for mass m, as well as
Majorana’s wave equation (4) (with m in
place of mg). The former means that the new
Dirac equation has solutions corresponding
to physical particles of mass m alone, and
the latter then means that only solutions
with positive energy appear. These results
can also be confirmed by explicit calculation.
It is interesting to see what the wave function
Y looks like when the energy and

momentum have definite values P, : apart

from factors, we have

Yy = exp (=i P-xj)-exp {—-51 (q‘:‘ + qi +
i P, (qi - ¢.) ~2i P2 q1 q2)[ (Po+ Pa)}(g)

Had we searched for a solution with negative
energy, we would have found that the depen-

dence on qi. 2 1s non-normalizable and so
unacceptable.

This solution, and therefore the new
Dirac equation, describes a particle with
mass m, spin zero and positive energy. The
system (7) i1s thus a clever way of isolating
just one out of the infimity of solutions of the
‘integer spin’ Majorana equation (4), and in
particular of avoiding the unphysical
space-like solutions of the latter. But this, as
we shall soon see, 1s achieved at a rather heavy

— —

price.

[t 1s tempting to interpret the above
solution of the new Dirac equation as
describing, in a relativistically consistent
way, a composite particle with some internal
structure corresponding to two constituents.
However, this must be done with caution.
We saw carlier that with respect to Lorentz
transformations Q behaves like a spinor,
similar to the ¢ of the old Dirac equation.
Thus the ‘positions’ g; and ¢ do not
transform vectorially like space-time
positions, and one cannot think of the
system described by Dirac’s new equation as
a composite one consisting of two
conventional particles. In spite of this
limitation, Dirac has developed a
semiclassical picture of the object described
by his equations: it is an extended object in
the shape of a shell which pulsates as it
moves along. This pulsation is the analogue
of the ‘trembling motion’ or Zitterbewegung
in the case of the relativistic electron
equation.

One gets the feeling that very little use has
been made, in the solution (8), of the rich
internal structure that the new Dirac
wavefunction ¢ was originally endowed
with. This is because one is ultimately
describing a spin zero particle with a unique
mass m, and nothing else. Attempts have
been made by Biedenharn and his
collaborators to generalise Dirac’s equation
to get particles with non zero spin value’.
However, in these generalisations, the
equations involve progressively higher
space-time derivatives of .

THE PROBLEM OF ELECTROMAGNETIC
INTERACTION

We come now to the major problem faced
by the new Dirac equation — a problem that
forced Dirac some years ago to give up this
Jine of inquiry. If we imagine the extended
object carrier charge ¢ and 1s placed in an
external electromagnetic field with vector
potential Ax(x), and if we suppose that the
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effect of the field on the system 1s given by
the replacement d.— 8, de 4,(x)asinthe
cases of the old Dirac equation as well as
Majorana’s equation, we obtain an
inconsistency. That 15 to say, for a
nonvanishing external field, the system

(Y (0~ te Afx) )+ m) Qyr=0, (9)

forces ¢ itself to vanish! Recall that
Majorana’s equation does not face a similar
problem.

This rather disappointing result was
stated by Dirac and later explicitly proved by
Biedenharn and collaborators. The essential
reason for this result is this: if one tries to
construct any antisymmetric bilinear
expression in the internal variables g,, p, the
result 15 either zero or a pure number. This
comes about because these are boson
variables obeying the simple commutation
relations (6).

The higher spin generalisations of
Biedenharn et gl also suffer from this same
problem.

Recently two possible ways out of this
situation, intended to save the overall
mathematical structure of Dirac’s
construction but permitting electromagnetic
interactions, have been suggested. One of
them involves going back to a classical
Lagrangian framework and setiing up a
model that makes full use of the internal
boson structure, so that after guantisation
one describes a whole sequence of particles
with mass increasing monotonically with
respect to spin; and such that each particle in
this spectrum can couple to the
electromagnetic field'%, Another alternative,
which is fully quantum mechanical from the
start, has been suggested by Sudarshan,
Chiang and the present author!ti2, and
Dirac has expressed the opinion that this
might very well solve the problem. The idea
here 15 10 use parabosoninternal variables g,
and p, rather than Dirac’s bosons!3, This
replacement does not harm the relativistic
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invariance of Dirac’s new equation at all.
Moreover, in the simplest version, the free
equation again describes a spin zero, mass /77
particle with positive energies. The major
difference s that antisymmetric bilinear
expressions in the paraboson g; and p; do
not vanish, so it appears now that one can
itroduce the ¢lectromagnetic intéraction in
a consistent way.

One difference. between bosons and
parabosons is this: we cannot any longer
exhibit the internal structure as directlyasin
(8), since the wavefunction ¢ is not simply a
function of g1, ¢» and x# The operators ¢;
and g, themselves are somewhat nontrivial
and in particular do not commute. In spite of
this, a straightforward generalisation to
NONZero Spins seems possible while retaining
the basic form (7) of Dirac’s new equation;
and even with this generalisation,
electromagnetic coupling remains
consistent, Work is currently in progress to
study these generalised equations in some
detail, and to see if the kind of description of
internal structure found by Dirac in the
course of his ‘playing about with equations,
just looking for mathematical relations’ may
not after all be of relevance for the real
world. This has happened so often with
Dirac that it may well happen once more!
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