GENETIC ASSOCIATION BETWEEN TWO PANICLE CHARACTERS IN SORGHUM B. Y. KULLAISWAMY AND J. V. GOUD Department of Agricultural Botany, College of Agriculture, Dharwad 580 005, India. THE study of inheritance and linkage relationship of qualitative characters in sorghum is still in infancy. Eight of the possible ten linkage groups were reported in 1966 and only recently the other two (ninth and tenth) groups have been reported 1,2 but even in these, only two to three genes could be mapped. Hence the present study on the inheritance and interrelationship of two qualitative characters-panicle shape and panicle density is timely. The parents IS8744 and IS1134 were selected from the germplasm collections, maintained by the Sorghum Breeder, Regional Research Station, Dharwad, for hybridization. The cross was effected in June 1978. The subsequent generations, F_1 , F_2 and F_3 were raised at the College of Agriculture, Dharwad. 1438 plants comprised the F_2 population; out of these 72 plants were selfed at random, to advance for F_3 generation for confirmation of the F_2 ratios. The number of plants in F_3 progenies varied from 145-250. The recombination value was worked out by the direct method⁸ The segregation pattern (table 1) in the F₂ population revealed that both the characters under study were inherited monogenically which was confirmed by the F₃ breeding behaviour (table 2). Oval and loose panicles showed dominance over spindle and compact panicles, respectively. Ayyangar³ found spindle-shaped panicle dominant over the oval shape. The gene symbol *Op* was later assigned⁴ for the factor identified. Jayaramaiah and Goud⁵ found the oval shape of the panicle dominant over the cylindrical as found in the present study in which the dominance relationship and the F₂ ratio obtained for panicle density agree with the reports of Ayyangar and Ayyar⁶ and Ghawghawe et al⁷, who Table 1 Morphology of parents, F_1 and F_2 ratios | Characters Panicle shape | Parents | | F_1 | | F ₂ seg | regation | X ² | Probability | |--------------------------|---------|--------|-------|-----|--------------------|----------------|----------------|---------------------------| | | IS8744 | IS1134 | _ | | | | | with F ₂ ratio | | | Spindle | Oval | Oval | Obs | Oval
1050 | Spindle
388 | 3.01 | 0.1-0.5 (3:1) | | Panicle density | Compact | Loose | Loose | Obs | Loose
1066 | Compact 372 | 0.58 | 0.5-0.3 (3:1) | Table 2 F_8 Breeding behaviour for two characters in the sorghum cross IS8744 imes IS1134 | Character | | Breeding
true for | Segregating into 3:1 | Breeding
true for | X ² | Probability | | |-----------------|------------------|----------------------|----------------------|----------------------|----------------|-------------|--| | Panicle shape | | Oval | , <u></u> | Spindle | | | | | | O | 20 | 30 | 22 | | | | | | \mathbf{E}^{i} | 18 | 36 | 18 | 2.11 | 0.50-0.30 | | | Panicle density | | Loose | | Compact | | | | | | O | 16 | 34 | 22 | | | | | | E1 | 18 | 36 | 18 | 1.22 | 0.70-0.50 | | O, observed; E¹, expected on 1:2:1 ratio. | Joint ratio | Assumption | Obs/Exp | .Phenotypes | | | | | | |-------------|--------------------------|------------|--------------|--------------|--------------|------------|------|-------------| | | | | AB | Ab | аВ | ab | X² | Probability | | 9:3:3:1 | Independence | Obs
Exp | 752
808.9 | 298
269.6 | 314
269.6 | 74
89.9 | 17.1 | < 0.01 | | | Linkage | Exp | 783.7 | 294.7 | 294.8 | 64.7 | 3.9 | 0.3-0.2 | | | (Cross-over value 42.4%) | | | | | | | | TABLE 3 Joint segregation of panicle shape (3:1) with panicle density (3:1) The joint segregation (table 3), revealed that the factors Pa_1 (panicle density) and Op (panicle shape) were linked with a cross-over value of 42.43 Morgan Units. Two genes: Pa_1 and Z (pearly grains), were found to be linked by Ayyangar and Ayyar⁶. Ghawghawe et al⁷ added another four factors, Bs, Stp, Oy and Gh to this group and termed this as fourth linkage group. The linear order was as follows: Bs(25.8) Z(16.39) Pa₁? Stp(21.02) Oy(41.5)Gh. The gene Op in the present study was found to be associated with Pa_1 . As Pa_1 was located in the fourth linkage group, it was inferred that the gene Op also belonged to the very group. The recombination value between Op and Pa1 was 42.43 Morgan Units. The location of the gene Op with respect to other loci already mapped, could not be determined for want of the required contrasting characters in the cross studied. However, as the gene Op was located at a distance of 42.43 Morgan Units to Pa_1 , it may be that the gene Op would lie beyond Bs or it may lie between Stp and Oy or oy and Gh. The exact location of the gene Op with respect to other loci, cannot be determined because Ghawghawe et al7 did not indicate the distance between Pa_1 and Stp. The total mapped genes in this fourth linkage group of sorghum with the addition of Op from the present study would thus be seven. ## 15 July 1982; Revised 18 September 1982 - 1. Kullaiswamy, B. Y. and Goud, J. V., Theor. Appl. Genet., 1982 (In press). - 2. Kullaiswamy, B. Y. and Goud, J. V., SABRAO., 1982 (In press). - 3. Ayyangar, G. N. R., J. Madras Univ., 1939, 11, 131. - 4. Schertz, K. F. and Stephens, J. C., Tech. Mono. Texas. Agric., Exp. Stn., 1966, 3, 42. - 5. Jayaramaiah, H. and Goud, J. V., Indian J. Genet., 1982 (In press). - 6. Aygar, G. N. R. and Ayyar, M. A. S., Proc. Indian Acad. Sci., 1938, B8, 100. - 7. Ghawghawe, B. G., Bhale, N. L. and Shekar, V. B., *Indian J. Genet.*, 1966, 27, 205. - 8. Kolhe, A. K., Indian J. Genet., 1972, 32, 35. ## A NEWLY INTROUDCED FODDER LEGUME (HEDYSARUM CORONARIUM—FAMILY LEGUMINOZAE JUSS) V. ISWARAN, M. P. NUTI* AND S. CASELLA* Division of Microbiology, Indian Agricultural Research Institute, New Delhi 110 012. *University of Pisa, Institute of Microbiology, Agraria, Pisa, Italy. HEDYSARUM Coronarium is a mediterranean forage legume able to grow, survive and give valuable fodder production, in extremely unfavourable conditions in clay/sandy soils upto pH 8.5-9, hot dry wet summers, etc. Its potential had been overlooked where nitrogen of chemical synthesis was not a limiting factor for crop production. Testing of rhizobia strains for the improved production of this crop was carried out by the senior author at the *Institue of Microbiology Agraria* Italy in 1981. To determine symbiotic effectiveness, seeds of *H. coronarium* were grown in polythene pots 25 cm in dia containing substrate made from an equal mixture (V/V) of vermiculite and river sand. Surface sterilized germinated seeds were sown (30/pot) and inoculated wherever necessary with heavy suspensions prepared