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COMBINATION OF REGRESSION AND RATIO ESTIMATE

L. N. UPADHYAYA and H. P. SINGH
Department of Physics and Mathematics, Indian School of Mwmnes, Dhanbad 826 004, India.

ABSTRACT

In this note an estimator dual to Mohanty estimator has been proposed. The properties of the
proposed estimator have been discussed under the large sample approximations.

INTRODUCTION

ET a simple random sample of n units be drawn

from a population of N units. Denote the variable
of interest by y, and two auxihary varibales correlated
with y,byxand z. Let ¥, X, Z be the population means
and ¥, X, Z be the sample means. It is desired to estimate
Y using supplementary information on x and z. The
usual regression estimator (j,,), . and ratio estimator
¥ can be defined as

(.?lr]y.: = j”-+b(i—_f)& (1)
and -}TR = (j;/:f)f! (2)

where b is the coefficient of regression of y on x in the
sample. Srivenkataramana' proposed a dual-to-ratio
estimator as

Vra = (7/X)X*, (3)

where X* = (NX —nx)/(N — n). Mohanty? proposed
a regression ratio estimate based on two auxiliary
variables x and z as

YRR = [(Tlr)yt/-f]-z_' (4)

In this note we propose a dual to Mohanty?
estimator and define 1t as

j’?H = [(FIr)}*I/T_IE*a (5)

where Z* = (N_Z_—_n_ﬂ/(N — n). It is assumed that the
population means X and Z are known.

BIASAND MEAN SQUARE ERROR (MSE) OF y,,:

Following Mohanty?, the bias and MSE of ¥, to
terms of order O(n~ ') are obtained as

B(yy) = (Y/N)(pyp3 — p2)e,c, —cov (b, X), (6)
M@y = 1 =-NY/n)[ci(1-p})
—29(P2 '—ﬂipa)('yfz-i'gz{':z], (7)

—_—

where f=n/N, g=n/(N—-n), ¢, =4a,/Y, c,.= 0. /X,

£ = ﬂ;/z g = COV (y= I)‘/ﬂ'yﬂ‘x, P2 = COV (_}’, Z)/'ﬂ'}.ﬂ'z
and p, = cov(x, z)/o_a,.

Mohanty? obtained the MSE of ¥, to terms of order
O{n~ ') as

M(Frg) = (1 =Y /[ —pi); +ci
—2('}.,61 (pZ _pIPJ)] (8)

The MSE of the estimators ¥, (¥,,),, and (Fy,),,
(regression of y on 2) to terms of order O(n~ ') are

M(Flr)y: — (1 _f)(?z/n)(l —pf)cia (9)
M.}y, = (L=)(V?/n)(1 — pi)cy, (10)
Vi(3) = M(F) = (1 1) (Y*/n)c;. (11)

REMARKS

The consistent estimators of the MSEs (7)~(11)can be
obtained by replacing ¥, ¢,, ¢,, ¢., Py, Py and p, by
sample statistics y, £,(= 5,/¥), Cx( = (5,/X)), ¢,( = 5,/7)
ry, ry and ry, where s2 = (n—1)"'Y7_ (4, —u)* u
= ZL: w,/n, u=x,y,2, ry=cov(y, x)/s,s,, I,
= cov (), z)/s,s, and ry = cov(x, z}/s,s..

Comparisons

The proposed estimator ¥, is more efficient than the
estimators y or g, according as

{pici+29¢c,c.{p—pips)—g?ct} >0; (12)

either  (p,—py p3) < {(1+9) ¢,/ (2c,)};
(1—g)>0; (13a)
or (p2=p1p3) > {(1+9) c./(2¢,)};
(1—g) <O. (13b)

The condition (13a) can also be written as

{2(p2—p1p3)c,—c,}
Cs

<g<l. (14)

Letp,y > 0,(i = 1,2,3)¢,4, > 0and ¢, 4, > O be the
estimated (or guessed) values of p, (i = 1,2,3), ¢,andc,
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respectively, from the data at hand such that
O<py€p(i=123) O0<e, <0,

and
0 <« C: () % C,.

1t may be shown that a set of sufficient conditions for
Yy to be more efficient than ¥z, would be given by

[2 (P2 1y~ P11 P3y) €y “f«'zm}

C: (1)

<g<l.
(15)

From the expressions for M (yg,)in (8) and M (7) in
(11) it follows that yg, is more efficient than ¥ when

(P2—p1 p3) > {Cr-/(zcr)}- (16)

Since g is usually small, (13a) and (16) imply that for
most part 7, is superior, in terms of MSE, to ¥ just when
Yre 18 mferior to y. In this sense §, and ¥, are
complementary,

DOUBLE SAMPLING

Let X’ and Z’ be the means of x and z for the first
phase large sample of size n’ (> n). n is the size of the
second phase sample and 7, X and Z are associated
sample means for y, x and z. We estimate Y first by
{¥irhyx = ¥ + b (X’ —X) and this estimate is used to get
the estimator

Vas = [(F 1 /T ]2 (17)
where ¥ =z —nd)/(n —n).

The bias and mean square error of (17) are given by the
following theorems:

Theorem 1—The bias of the two phase sampling
estimator (17) to terms of order O (n™'), is given by

B (y4) = (*ﬂ-zg—) {(cov (X,2) —cov (X,77))

- (cov (X',Z) —cov (X', 7))}

~{g’ (cov (7,2) —cov (¥,7))

+ (cov (b, X) —cov (b,X")}, (18)
where f = cov (x, y)/a2, g = n/(n’ - n).

Theorem 2-—In double sampling if the second phase
sample 1s a subsample of the first phase sample, MSE of
the estimator (17) to terms of order O (n~ 1), is given by

M (5) = {(n—n)/n'n} 3 [c} (1 —p})
+91¢':+29’ (PlPJ"'P:)Cpf:]
+{(N=n')/Nn'} YV c;. (19)

_ . —

Theorem 3—In double sampling if the first and second
phase samples are independent, MSE of (17), to terms of
order O (n™ 1), is given by

M (¥4) = (Y*/n) [9”2{'3"” (1 —pf)(?,f
+ 29" (py pa—P2) C},C,_]
+(Y/n'y[g%cl+picl

+24' py p3CyC.]- (20)

STRATIFIED SAMPLING

Let N, denote the number of units in the At stratum

and n, the size of the sample to be selected therefrom,
so that

L L
> Ny=Nand ) n,=n (21)
h=1 h=]

Let y,, X, and Z, (h =i ... L) be the sample means of
the variables y,x,z for the h* stratum. 7,

— 2:::1 l”Vh Vhs X = E;; 1 H’;, X4 and fSt
= Z}I;=1 W, Z,, where W, = N, /N, are stratified sample
means of y,x and z respectively. Then the following

two types of estimators of Y can be formed.
(1) Separate estimator

A L
Y, = Z (V1ra/ Z3) 24, (22)

where ¥, = J,+b,(X,~X,) and ZF=(N,Z,
— 1, Z7,)/ (N, — 1),
(11) Combined estimator

Y [(.V]r st}ﬂ 51! (23)

where (7)), =7,+b(X—Xy) and z%=(NZ
~nZ )/ (N - n), |

The bias and MSE of (22) and (23) are given by the
following theorems:

Theorem 4—Bias and MSE of the separate estimator to
the first order, are

B(Y) = Z {(h/N) Py o3n—pan) €,

—cov (by X)) }; (24)
and
A L
M(Y)= ) {(Na—n)/N\} Wi
h=]

x {(Y}/m)[(1—p%)
— 204 (P2n = P14 P34)
XYy sat gy f:,]; (25)
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gn = Ny, (N, —n), 14

= COV (J'y. X)),/ 0

w here
¥a ﬁfh'

pZH = OV (_}'ﬂ, :h)f ﬂ.}i G'Ih. p}h = COYV (x'l! zh)/ﬂxh a;:*‘

€., = 6, /Y C, = ath}f,,, C., = a*_,_,h/Z,,.

Theorem 5—Bias and MSE of the combined estimator
to the hirst order are

A L N, —
B(Y) =}, g( - "“)uﬁ(ﬁpmﬁ
h

=] Nyn,

~pPuaw (0, /Z)~cov (b X,),  (26)

and

A L —
M) =3 (=) wz| o2 + 202
¢ N!In.ll h ¥ X

A= 1
+g* (Y/Z)? Uf_—ZﬁpuﬁIﬁ(‘rﬂ

+29(Y/Z) 6, (P20, — pax th)]. (27}
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ABSTRACT

A model for the dispersive optical bistability in plasmas is suggested. Using the theory of coherent
wave—wave nteractions in plasmas, and the Vlasov—Maxwell equations, the conditions for the
existence of optical bistability, satisfying the constraints of perturbative expansions, are derived for
the general case of a complex coupling constant between the driven and the driving modes.

INTRODUCTION

PTICAL bistability (oB) has been extensively
studied 1n recent years. Mean field approximation
has been used in the theory of absorptive!:? and
dispersive?® os. Bonifacio and Lugiato gave the theory
of absorptive and dispersive o incorporating the
incident radiation®, The photon statistics of absorpt-
ive®> and dispersive® o have also been found. An
anharmonic oscillator model’ was proposed to de-
scribe dispersive o and the switching characteristics
studied®, in the case of the incident radiation being
damped either very slowly or very quickly with respect
to the oscillator.
This paper studies the occurrence of os in an
electron-lon plasma using the anharmonic oscillator
model. The non-linear processes in the plasma are

assumed to give rise to the anharmonicity in the model.
The nonlinear theory of laser-plasma interaction is
studied in the kinetic picture. The most general
conditions for the existence of os in a dispersive
medium have been derived, the special cases of which
agree with those in literature.

Model

Consider a warm, fully ionized electron-ion plasma
with a plane-polarised laser radiation incident on it.
The plasma acts as a dispersive medium. Let the low
frequency 1on-acoustic waves of frequency w, be
maintained at a constant amplitude by an external
agent. The incident laser radiation has a frequency w,
= wp+ O(w,), where w, is the electron plasma
frequency. [ O(w,) means that, since @, and w;, » w,,



