Current Science, March 20, 1984, Vol. 53. No. 6

gn = Ny, (N, —n), 14

= COV (J'y. X)),/ 0

w here
¥a ﬁfh'

pZH = OV (_}'ﬂ, :h)f ﬂ.}i G'Ih. p}h = COYV (x'l! zh)/ﬂxh a;:*‘

€., = 6, /Y C, = ath}f,,, C., = a*_,_,h/Z,,.

Theorem 5—Bias and MSE of the combined estimator
to the hirst order are

A L N, —
B(Y) =}, g( - "“)uﬁ(ﬁpmﬁ
h

=] Nyn,

~pPuaw (0, /Z)~cov (b X,),  (26)

and

A L —
M) =3 (=) wz| o2 + 202
¢ N!In.ll h ¥ X

A= 1
+g* (Y/Z)? Uf_—ZﬁpuﬁIﬁ(‘rﬂ

+29(Y/Z) 6, (P20, — pax th)]. (27}

ACKNOWLEDGEMENTS

Authors express their sincere thanks to the referee
for his valuable comments and sugestions. HPS is
indebted to the CSIR, New Delhi for granting a

fellowship.

2 December 1981; Revised 2 April 1983

1. Srivenkataramana, T., Biometrika, 1980, 67, 1, 199,
2. Mohanty, S., J. Indian Stat. Assoc., 1967, §, 16.

DISPERSIVE OPTICAL BISTABILITY IN PLASMAS

M. V. ATRE and S. KRISHAN
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ABSTRACT

A model for the dispersive optical bistability in plasmas is suggested. Using the theory of coherent
wave—wave nteractions in plasmas, and the Vlasov—Maxwell equations, the conditions for the
existence of optical bistability, satisfying the constraints of perturbative expansions, are derived for
the general case of a complex coupling constant between the driven and the driving modes.

INTRODUCTION

PTICAL bistability (oB) has been extensively
studied 1n recent years. Mean field approximation
has been used in the theory of absorptive!:? and
dispersive?® os. Bonifacio and Lugiato gave the theory
of absorptive and dispersive o incorporating the
incident radiation®, The photon statistics of absorpt-
ive®> and dispersive® o have also been found. An
anharmonic oscillator model’ was proposed to de-
scribe dispersive o and the switching characteristics
studied®, in the case of the incident radiation being
damped either very slowly or very quickly with respect
to the oscillator.
This paper studies the occurrence of os in an
electron-lon plasma using the anharmonic oscillator
model. The non-linear processes in the plasma are

assumed to give rise to the anharmonicity in the model.
The nonlinear theory of laser-plasma interaction is
studied in the kinetic picture. The most general
conditions for the existence of os in a dispersive
medium have been derived, the special cases of which
agree with those in literature.

Model

Consider a warm, fully ionized electron-ion plasma
with a plane-polarised laser radiation incident on it.
The plasma acts as a dispersive medium. Let the low
frequency 1on-acoustic waves of frequency w, be
maintained at a constant amplitude by an external
agent. The incident laser radiation has a frequency w,
= wp+ O(w,), where w, is the electron plasma
frequency. [ O(w,) means that, since @, and w;, » w,,
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we take both w, = wy+w, and w, = w, + 2w, as
possible interactions in our analysis ]. The wavevectors
of the laser, plasma and acoustic waves are taken to be
collinear. A constant electron drift with velocity U, is
maintained perpendicular to the wavevectors. This
current is necessary to couple the laser and the plasma
waves.

A schematic diagram of the model is given in figure
1. Here k 1s the wave-vector, K and B are the electric
and magnetic fields, and the subscripts L, P and q,
stand for the laser, plasma and acoustic waves respect-
ively. The nonlingar interactions considered are shown
in figures 2 and 3. Figure 2a corresponds to the
nonlinear process satisfying w; = w,+ 2w, while
figure 2b shows the case w; = w, + w,. Figure 3 shows
the coupling of four-plasma waves and is in our model,
the analog of the anharmonic oscillator potential. The
laser field in the plasma is assumed to be a dipole field
(k; <kp,k,).

The nonlinear interactions are incorporated in the
nonlinear Vlasovequation asa perturbation expansion
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Figure 1. Schematic configuration of the plasma
interacting with the laser. E, , E,and E, are the electric
fields respectively of the laser, plasma wave and ion
acoustic wave, k, , kpand k, their wavevectors, B, is the
magnetic field of the laser, u, 1s the velocity of the
drifting electrons.
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Figure 2. Laser plasma interactions: (a) Four-wave
interaction involving two ion acoustic waves, a plasma
wave and the laser. (b) Three-wave interaction,

PN

Wp » Kp

wp, Kp

Figure 3. Plasmon-plasmon interaction.

in the electric field amplitudes®. If the amplitudes of the
electric fields vary very slowly in space (time) as
compared to the charactenstic length (time) of the
wave, then the space (time) variation of the electric
fields can be written in terms of the nonlinear polanz-
ations or currents'®, Thus one obtains a set of coupled,
nonlinear differential equations in E, and E, and
conditions for existence of os will be derived.

FORMALISM

The derivation of the equation of motion for E, is
given In detail. That for E; follows in a similar manner.

Let the equilibrium distribution functions for the
electrons and the 1ons be denoted by

fﬂe(v) foc

(\/Eut}e)

Ro;
fﬁi(v) -
(\/;Um)a
respectively, where n,, is the equilibrium species
number density (s = ¢, i) and

vos = (2hT,/m,)!?

with 7, being the species temperature.
We impose the following conditions
(a) T, > T;, so that the ion-acoustic waves are weakly
damped.
(b) uy < vg;, which s the Penrose criterion to prevent
the build-up of ion-acoustic instability'®.
Also for the fully (but singly) ionised plasma,

sexp[— (5 + (v, — uo)” +17)/r5. ]

(1)

expl — (v + vy + 62V

(s = e, 1)

Mo, = Ry = Ay
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The velocity distribution function for each species is
written in a perturbative series as

SV 0 = o (V) + /i, (X, V, 1) +/,,(X, ¥, 1)
+H XV, 0+ L0 (2)

wheref,, is the mth term in the series and is a monornial
of degree m in the electric field amplitudes, and arises
due to all possible interactions of (m+ 1) waves, V is
the velocity variable. Thus figure 2b contributes to
S(X, V1), figures 2a and 3 contribute to f5(X, V, 1)
while all linear processes obviously contribute to
fi(X, V).

The variables X, t are Fourier-Laplace transformed
to k. w and the resulting linear and non-linear
polarizations are found from the [ (w, k). These
polarisations are then used to find the equations of
motion. The conservation of momentum and energy is
automatically incorporated.

Below we give expressions f] (w, k), f;(w, k) and
f3{w, k) which have been used to find the nonlinear
polarizations and currents. The A, occurring in the
expressions s the Fourier component of the acceler-
ation on the charged particle due to the electric and
magnetic fields.
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which show a coupling between three waves having
frequencies w, w’ and w — ' and wavevectors k, k” and
k — k' respectively,
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Showing coupling of 4 waves with frequencies w, @',
" and (w -’ — w") and wavevectors k, k', k” and k
— k" — K" respectively.

The formalism of such coherent nonlinear interac-
tions of waves as well as a diagrammatic representation
of fm(w,k) have been given by AlPtshul and
Karpmann®,

y 1
(w—::u’—-m”—(k—k'-—

The following inequalities have been used in finding
out the polarization:

(@) w,(wp) > k,; (kplug,,

(b} kyvor € w, <€ k,vo,,

{c) kp, k, » k,; (dipole approximation),
d) w; ~ @, > a,,

() B;fe=k,E,/w,.

Equations of Motion

The polarizations and currents are proportional to
the velocity integrals of the various f . (w, k). Below we
obtain the equation of motion for E,. That for E, can
be obtained in a similar mannert.

The contribution to the linear polarization is found
to be

- fﬂﬂ k..P
Es;.
m wPe (3)

J};e (ﬂJF* kP& V]dv

The ions make a similar contribution.
The second order distribution for figure 2b yields

2€2k kLnnuﬂ

sze(w}n kP! V)dV = 2 ZP 2

mf mPEkﬂ vﬂe mL

EZE, (4)

The tons have no drift velocity and hence their
contribution is identically zero.

The third order nonlinear polarization has contri-
butions coming from figures 2a and 3.

The mteraction in figure 2a gives us

12e 7 k k, u
J}.ae(mf"k!’! V)dv 3}(2 L .

(E3)* E. (5)
P”ﬂ:
Again the ions do not contribute because they have no

drift. Figure 3 yields

3, 3
J'f.'}e (wpi kP V] d(v = !45"{;8 k

4m fﬂpe

|Ep|* Ep. (6)

The contribution from the ions is smaller by a factor of
(m./m,)? and hence has been neglected.

Writing the total variation of E, in terms of
nonlinear polarizations'®, we get
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where v ; is the group velocity of the plasma wave and
Yp Is the damping term introduced.

\_Ve show in appendix A that v /v, can be ignored,
whilefor E,,v,;, = —ay, whereais E; atx = Qand y,
is the damping constant for the laser mode.

APPENDIX-A

(@) For the electrostatic plasma wave, the dispersion
relation is

Hence the group velocity is

g2
V.p = kpvi./wp,

From inequality (a) given in the section under
formalism, and for small v, , we get D,p/ Vg, <€ 1andcan
thus be ignored.

(b) The dispersion relation for a laser mode in 4 plasma
1S

k*C* | W}
2 iy )2
Wy (@, +1iy,)

4

where y, 1s the electron-ion collision frequency. Setting
k=k,+if (k; and B real) we get

p= _}’Lw.ﬁeﬂ‘;:czwp
w; = wh, +k2C?.

The gradient 0 /0x can be written as o where ais E;
at x = 0. Now the group velocity v, = k,C%/w, . Thus

aEL ?Lw.’z’f
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Writing the equations in the rotating frame of the
plasma wave, we have
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The equation for E, can found (using equation Al)
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In deriving the above equations, the energy density
of the 1on-acoustic wave is high enough to be regarded
as a pump. The laser pulse is launched into the plasma
after the acoustic wave has had enough time to
establish itself as a collective phenomenon. One of the
many ways to populate ion-acoustic waves is to launch
an Alfven wave at the plasma surface. In real-life
phenomenon, the plasma is generally embedded in an
ambient magnetic field. In such a situation, the role of
the acoustic waves n our model can be played by either
a magneto-acoustic wave, an ton-cyclotron wave or an
Alfven wave, though the effect of an external magnetic
held would then have to be considered in the theory.

Introducing ¢ as the ratio of the acoustic wave
energy density to the electron thermal energy density (¢
has to be obviously < 1 for perturbative cut off in the
acoustic waves to be valid) (see appendix B) we get

APPENDIX B
The dispersion relation for an ion-acoustic wave is
wi 2w}
D= 1--—-’”-' L =0,
+k2u0£
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Introducing dimenstonless variables

1 2+ | 1 2
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Equation (12) is identical to the one obtained by
Selloni et al’.

7z and ¥, have to be identified for the plasma system
as follows: In a fully ionized plasma, the damping of
the electromagnetic wave is given by the electron-ion
collision frequency’?

5'5”0 2207;
V= T3/2 In 173 ] = Yoo

Ho

and y, x y,.
Ehminating X in (12), we obtain a cubic equation

2+ {1 + {1 +d?Y|C|? + 2(Re(C) + d (Im(C))
—53[dRe(C) - Im(C)]?) 2

Y?

o7~ HldReO) — Im(O)][(1 +d%)|C[* + 2(Re(C)
+d Im(C)} + 1]
+33[Im(C)—d Re(C)]® = 0, (13)

where Re(C) and Im(C) are the real and imaginary
parts of C and

z = |B}* +$Im(C) — $d Re(C).
The above equation has real roots when

1+|CIF (1 +d* ]+ 6[Re(C) + d Im(C)]
—4d*[Re(C)]? — 4[Im(()}?
+4d Re(C) Im(C) < 0. (14)

If the three-wave coupling (figure 2b) were absent, i.e.
Im(C) = O then (14) reduces to

d> /3,

which is the inequality obtained by Selloni et al”.

If on the other hand, Im(C) » Re(C) (i.e. the interac-
tion shown 1n figure 2b dominates over that shown in
figure 2a), then

3[1+|CIP +d*)] +6dIm(C) — 4[Im(C)]* € 0, (15)

1s the condition for the existence of OB.

DISCUSSION

Thus (14) 1s a general condition to be satisfied in a
dispersive medium if the medium has to exhibit os, We
have considered the most general case where the
coupling constant between the driving (the laser) and
the driven (piasma wave) modes is complex. The results
of Selloni et al” turn out as a special case of our
analysis, by restricting the coupling constant to be real.

Plasmas are a class of systems whose particle density
can be varied in the laboratory by many orders of
magnitude, going all the way to about ~ 10%2/cc. The
drift velocity in the plasma can be controlled at will.
Similarly the temperature can be varied to a large
degree. Therefore one concludes that the quantitative
features of the bistability phenomenon can be varied
with relative ease, when it is excited in a plasma.
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SYNTHESIS OF SOME (BENZOXAZOLYL-2)-ALKYL/ARALKYL SULPHIDES AND SULPHONES
AS POTENTIAL PESTICIDES

SOMARI GIRI and A. K. MISHRA

Department of Chemistry, Gorakhpur University, Gorakhpur 273001, India.

ABSTRACT

Several new (benzoxazolyl-2)-alkyl/aralkyl sulphides and their respective sulphones have been
synthesised and screened for their fungicidal activity against Alternaria tenuis and H elminthosporium
oryzae; and two of them have been tested for their molluscicidal activity against Lymnea acuminata.
The sulphides synthesised herein are fluorescent compounds.

INTRODUCTION

NUMBER of sulphides containing aryl, benzyl and
heteroaryl radicals display acaricidal and insecti-
cidal properties'~>. There are records® 7 that a com-
pound containing a thiol group placed adjacent to
heteroatom 1n a nitrogen heterocycle often induces
fungicidal power to it. Aryl and heteroaryl sulphones
have been Investigated in large numbers as fungicidal
and miticidal agents®®. Since benzoxazolyl suiphides
and sulphones do not seem to have been investigated
for pesticidal properties, the synthesis and bioassay of
the title sulphides and sulphones were undertaken.
These sulphides (I, _.) have been prepared by the
reaction of 2-mercaptobenzoxazole with different
alkyl halides or benzyl chloride in alkaline medium.
These sulphides were oxidized with hydrogen peroxide

©:—N NoOR @—N
| ¢+ R~ = i
OJ\SH R-Cl ACETONE O/‘\S"R

(Ig-e}
G;R ='CH2Ph
biR:"CH3
22 @'ﬂ\g - diR=-CH-(CH),
. ~~
AcOH Q™S e; R=-CHCH (CH3),

(IIg-e)
Scheme 1

in glacial acetic acid to yield the respective sulphones
(If,_.) (Scheme 1).

The authenticity of these compounds has been
confirmed by their elemental analysis and IR spectral
analyses. It i1s interesting to note that all sulphides
synthesised emitted intense fluorescence.

EXPERIMENTAL

[R spectra and elemental analyses (C, H, Nand S) of
the compounds are compatible with their structures,
Melting points were taken in open capillaries and were
uncorrected. IR spectra in KBr were recorded on
Beckmann's spectrophotometer. TLC was performed
on silica gel-G. 2-Mercaptobenzoxazole has been
prepared following a method given in literature'®.

(Benzoxazolyl-2)-alkyl/aralkyl sulphides (I,. ).

2-Mercaptobenzoxazole (1.1 M} dissolved in NaOH
solution was refluxed with alkyl halides or benzyl
chloride (I M) for 4-6 hr. The reaction mixture was
then poured into ice-water and the sulphide was taken
into ether, After removal of the ether, the sulphides
were obtained which were crystallised from ethanol.
Yield 70-50%. 1 : m.p. 54° [IR spectrum reveals
characteristic absorption frequencies at 1740 cm ™!

O
(Cv-N=C/ stretching), 1280 em ™! {7 ™\, stret-
AN ) C C

ching), 720 cm ™! [C/ \C‘ stretching) and 1590 cm ™Y,



