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1. INTRODUCTION

nE discovery of the so-called spin-glass (sG)

behaviour! in certain magnetic alloys in the
early seventies has led to a series of very rich and
exciting developments in Statistical Physics.
These developments have promise of making a
far-reaching impact on our theoretical capability
to handle new levels of complexity in condensed
matter Physics and allied subjects. The purpose
of the present article is to provide a survey of the
main challenges posed by sG behaviour, key
theoretical ideas which have been developed
in this context, and their general significance in
the study of cooperative behaviour and phase
transitions 1in random systems.

The archetypal s system contains a low
concentration (~ 19} of magnetic atoms dis-
tributed randomly in a nonmagnetic metallic
host. The magnetic coupling between the mo-
ments arises due to long-ranged oscillatory RKKY
interaction, as a result of which certain pairs of
atoms interact ferromagnetically while the others
interact antiferromagnetically. The best studied
examples of such systems are Cu Mn and AuFe.2.
There are a variety of other insulating and
concentrated substances which exhibit sG be-
haviour. Thus it seems that the essential pro-
nerties of magnetic couplings which give rise to
sG behaviour are randomness and conflict.

The main characteristic of the sG phenomena
is the freezing of magnetic moments in random
directions at an apparently sharp temperature.
The evidence for this comes from several exper-
imental observations, listed as follows. (i) The
foremost signature for this freezing is a cusp in
the low field magnetic susceptibility as a function
of temperature. This is shown in figure 1. The
sharpness of the cusp suggests that freezing sets
in rather sharply at 7. (1) Mdssbauer spectrum
shows a line splitting abruptly below a tempera-
ture indicating onset of static hyperfine fields,
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Figure 1. Susceptibility of AuFe alloy with 29/ Fe,
plotted as function of temperature. Full curves refer to
zero fleld.

(111} Muoun-spin rotation experiments alsa show
a rotational dephasing abruptly below the freez-
ing temperature indicating the presence of static
local fields, (iv) Neutron scattering experiments
show an onset of incoherent elastic part around
the freezing temperature, which 1s again indica-
tive of the freezing of the motion of the atomic
magnetic moments.

More precisely, these experiments suggest that
at least over the time scale of the order of the
probe time of the experiment {e.g., the probe time
of neutron scattering is 10~ ' ! sec, while that for
Mdssbauer experiment is 10”7 sec) the moments
are frozen. Coupling this set of observations with
the fact that such systems show no net equilib-
rium magnetisation or any other kind of mag-
netic long range order as ascertained {rom neu-
tron scattering measurements, leads us to believe
that magnetic moments freeze in random direc-
tions rather sharply as a function of temperature.

To investigate the nature of this freezing, the sG
systems have been subjected to several other
measurements, like measurements of specific
heat, resistivity, magneto-resistance, ultrasound
attenuation, NMR, ESR, frequency dependent sus-
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ceptibility, M-H curves, various types of remnant
magnetisations and their relaxation, various
hinds of neutron scattering measurements etc’. A
discussion of all these measurements and their
contribution to our present understanding of the
sG state and the freezing process 1s beyond the
scope of this article. We content ourselves by
mentioning a few important observations
(a) The magnetic specific heat shows no anomaly
at T,, and there is significant contribution at
temperatures well above 7,. Quantitatively it
seems roughly 70 °, of the total entropy develops
above T, implying strong short-ranged magnetic
correlations, (b) Below T, there 1s remnant mag-
netisation which decays rather slowly with time.
This relaxation is distinctly non-exponential and
occurs over time scales ranging from minutes to
hours. The value of the remnant magnetisation
depends upon whether the system is cooled
below T in the presence of the ficld or the field is
applied and removed after cooling. Several sGs,
show rather narrow but displaced hysteresis
loops, characteristic of unidirectional anisotropy
() The sG state 15 rather sensitive to external
magnetic field. The sharp cusp seen In suscept-
1bility measurements is broadened considerably
by the application of a field as low as 100 G. This
can be seen In figure 1. (d). Anomalies which
occur 1n other properties at the usual phase tran-
sition point are not seen in the sG transition. For
example, temperature derivative of resistivity,
ultrasound attenuation and specific heat show no
anomaly unlike other transitions.

All this points to the fact that if sG transition is
at all a thermodynamic, cooperafive transition, it
is an unusual one. Another dominant view that
finds considerable favour is that sG freezing
IS a viscous freezing, in which single moments
first develop strong, short range order to form
super paramagnetic clusters, whose free rotations
are blocked by anisotropy energy barriers. The
relaxation time of such a cluster to tunnel from
one favourable orientation to another is given by
Neel’s formula

t = 1o exp(E,/k,T) (1.1)

where E, 1s the anisotropy energy barrier. As T
decreases t becomes large very rapidly and the

ciuster appears frozen in any experiment whose
measurement time 7, is less than t. This clearly
implies that {reezing temperature 7, should be a
function of probe time. The experimental sup-
port for such a view comes from two classes of
experiments. For certain sG the a.c. susceptibility
measurements do show a dependence of freezing
temnperature on frequency®, In neutron scattering
measurements on AuFe, Murani® has found
definite evidence to conclude that the onset of
freezing, as indicated by the onset of diffuse
elastic scattering, occurs at different tempera-
tures, dependent upon the energy resolution,
This 1s indicative of the fact that the system
dynamics contains processes whose relaxation
times cover a wide range. Thus as the energy
window, is increased more and more, such pro-
cesses are included in the elastic part and the
freezing appears to set in at higher temperatures.

The major challenge posed before sG
theories is to understand phase transition or
sharp viscous freezing in a system where the
effects of disorders are very strong and nontrivial.
1n the traditional Yheories of phase transition, the
mutual interaction between the degrees of free-
dom have a tendency to produce order ie. an
alignment of some sort, which competes against
disorder favouring thermal energy entering
through entropy. At high temperatures, the stat-
istical weight shifts towards states with large
disorder while at lower temperatures the states
with high alignment or order dominate the
statistical sum, leading to the ordered phase. The
interactions in the sG, do not produce any spatial
order even when they dominate at low tempera-
tures and it is not clear 1n what precise way, they
compete agamst thermal disorder. Since the spin
glass freezing is not accompanied by any spatial
long range order, a time dependent description
for freezing seems more natural. However, such a
time dependent description is not easy to In-
corporate within the usual statistical mechanics
for systems which contain a wide range of time
scales.

In the next section we discuss the Hamiltonian,
its low energy properties and possible choice of
the order parameter which can describe the
sG phase. We also present in some detail, the
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understanding obtained from numerical calcu-
lations on small samples. In the third section, we
review the statistical mechanical theories, which
have been developed to describe the sG tran-
sition. In the last section, we briefly describe
the dynamaical theory for the transition and some
other 1deas which have been found useful,

2. THEORETICAL MODELS: LOW
TEMPERATURE PROPERTIES.

Let us now turn our attention to the basic
theoretical models which are used to understand
sG magnetism. As 1n the other types of magnet-
1sm, the basic model used is the random version
of Heisenberg model and its simplified cousin,
the Ising model. Edwards and Anderson (ga)

were the first to introduce the following
Hamiltonian?

—

Hz%zjijgi'sj (21)
i, J

where the spin S"i’s lie on a regular lattice whose
sites are denoted by i and J;;’s are random
variables which are non-zero for nearest neigh-
bours and have a common probability distri-
bution P([ J;;]) for all pairs. ga took the prob-
ability distribution to be gaussian, so that the
Hamiltonian contains only two coupling

parameters
~ 2
P(J;;) = (2rJ*) "2 exp Sl ] (2.2)
i 2J 2
In the original ka model J, = 0. The idea behind,
these abstractions is that the important elements
of the sG physics are randomness and con-
fiicting interactions, the particular form of
randomness, the form of interaction e.g. whether
1t 1s RkKY or direct exchange, being irrelevant for
general properties, whose understanding should
be the first goal of the theory.

The element of conflict can easily be under-
stood 1f we consider a plaquette of four spins as
shown in figure 2, interacting via the
Hamiltonian of Eq. (2.1). If the signs of interac-
tions are as shown, 1t is easy to convince oneself,
that no spin configuration 1s possible in which ali
bonds have the smallest energy. For example if

il

we keep all the spins up the bond 2-3 remains in
its higher state, while if we make spin 2 or 3 down,
one of the ferromagnetic bonds remains unsatis-
fied. One refers to this situation by saying that the
plaquette is frustrated®. When we consider the
complete lattice, the frustration of plaquettes
makes the problem of determination of ground
state configuration and ground state energy
extremely ditficult, an impossibility for a macro-
scopically large system. This underlies the basic
difficulty in describing the low temperature or
frozen phase of spin-glasses. The randomness and
frustration makes it very difficult to find a single
or a few parameters which characterise the sG
state even in a statistical manner. Yet for a
theoretical description of the type we are familiar
with, a condensed phase is described in terms of
one of a few order parameters. The first note-
worthy attempt in this direction, which really
generated most of the later developments 1n this
field was due to Edwards and Anderson who
introduced the order parameter g¢,

q = < (8i) (2.3)

where the brackets { ) denotes thermal average
for a fixed configuration of J;;'s and the bar
denotes the configurational average. When there
is no special direction or a spatial pattern for spin
ordering, g which 1s the magnitude of the spin
vector in the frozen state is perhaps the most
natural choice. Another definition which adds

1+ 2

Figure 2. A plaquette of four spins illustrating the
concept of frustration.
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some physical insight to g, is to regard 1t as the
infinite tme limit of”

g = lim g(t) = lim <3,()- 5,(0)). (24)
Pt an = X

This is essentially a measure of time persistence of
the direction of the spin vector in the frozen state.
Note how these definitions enable one to distin-
guish between the frozen state and the para-
magnetic state. If we took a snap shot of the
paramagnetic state, it would be very much like
that of a frozen sG state. However, the snap shots
of 1the paramagnetic state, at two fairly different
times would show little correlation whereas for
the sG state, we should see a pronounced corre-

lation even when the two times are far apart.
The rehiable checks about this sort of {rozen
state and its description in terms of ga order
parameter can only be done by computer calcu-
lations on some finite spin-systems. The
Hamiltonian {2.1), particularly 1ts Ising version
has been subjected to a number of Monte-Carlo
studies in dimensions two to five’ . There have
also been exact calculations of the partuon
function of small systems,'® ! which have shed
considerable light on the nature of low energy
states and the kind of ordering which 1s implied
by Eq. (2.1). The Monte-Carlo (mc) calculattons
on Ising systems show features very much like
experiments, i.e. a cusp in susceptibility, a broad
maxima in specific heat, a non-zero value of the
Ea order parameter below the freezing tempera-
ture 7; and a very slow power law relaxation
below 7. Results for Ising systems are similar for
all dimensions between two to five. However, the
slow relaxation and some later exact numerical
calculations lead us to believe that the Mc results
do not correspond to equilibrium. Bray et al'?
had made this suggestion initially by looking at
longer Monte-Carlo runs. The matter was how-
ever confirmed by Binder and Morgenstern'®,
who performed exact calculations for small sam-
ples of two dimensional Ising model. By extra-
polating their results to N — o0 (N denotes the
number of spins in the sample) they concluded
that the equilibrium statistical mechanical aver-
ages do not show any transition in two dimen-
sions and the various features of the mc calcu-

'

lations are non-equilibrium effects. Recently,
Young and Kirkpatrick!' have chosen to do
exact statistical calculations on small samples of
the infinite-ranged model, for which various
theoretical calculations have established that a
transition must occur. They do notice the trans-
ition but also find that the characterisation of the
low temperature phase 1s far from adequate.
The picture of the low temperature phase which
has emerged from Mc and other numerical calcu-
lations is the following.”» '3 The first point is that
the Hamiltonian of Eq. (2.1) has a very large
number of metastable states of order exp(xz N).
The metastable states themselves are grouped in
valleys in phase space. The phase space between
different valleys and the ground state of respect-
ive valleys are quite orthogonal to each other, the
overlap between such ground states being of the
order N*!/2 The metastable states within a given
valley require reversals of a small number of spins,
whereas the ground states of different valleys are
separated by large energy barriers and require
turning of a very large number of spins. A
pictorial understanding of the situation can oe
obtained in terms of figure 3. Here we plot
constant energy surfaces as the function of a
typical phase space coordinate. One sees that at
higher energies, the energy surface 1s continuous
and well spread over the entire phase space. On
the other hand, at lower energies, constant energy
surfaces are divided into small pockets in phase
space. In terms of this picture, one visualises the
low temperature properties of the system as
follows. As the energy of the system is lowered,
the system falls into one of the valleys in phase

N fe) S
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Figure 3. A schematic diagram of free energy plot-
ted against a typical variable of phase space.



Current Science, September 5, 1984, Vol. 53, No. 17

891

space and at some stage, other parts of the phase
space become inaccessible to 1t on the time scales
of the experiment. In low temperature mc calcu-
jations, the system is probing the energy surface
in one valley only, because to jump to equal
energy states of other valleys requires reversals of
very large number of spins. For Ising spins the
cause of slow relaxation within a given valley 1s
the presence of a large number of metastable con-
figurations, which can be escaped by reversal of a
few spins only. (For vector spins, such metastable
configurations are less likely due to the additional
degrees of freedom. Walstedt and Walker'?,
instead find that the bottoms of the valleys have
very small curvature in certain directions.) One
might ask at this stage as to why should one
expect a sharp and unique freezing temperature
in this picture. The reason seems to be that the
ground states of various valleys have nearly the
same energy, and there i1s a rather well defined
energy below which migration, between energy
wells ceases on time scales of the simulation.
Walker and Walstedt!®, working in micro-
economical ensemble, have identified the freezing
temperature with this energy, in reasonable
accord with experiments on Cu-Mn.

On the basis of this picture the cause for
discrepancy between Monte-Carlo results and
the results based on Statistical Mechanics be-
comes quite clear. In Statistical Mechanics, one
sums over states from the entire phase space,
including states which are quite mnaccessible to
the system at low temperatures. In fact, 1t 1s quite
straight-forward to see that for the symmetric
Hamiltonian of Eq. (2.1), the thermal average
(S, is strictly zero in the absence of an external
field. The situation is quite analogous to a
ferromagnet, where due to the degeneracy of the
ground state, the statistical mechanical average §;
1s again zero. The well known prescription to
G1scuss Jow temperature properties, 1s to put on,
an infinitessmal external field of the order (1/N),
which restricts the statistical sum to states in the
ncighbourhood of one of the ground states.
More precisely, 1h0ugh

lim — }_j (S, 50 =0 (2.5)

N—s

the average

lim lim ¥ ¢5;>, # 0. (2.6)

h—0 N—o
Can one not do something similar for sGs too?
The first point to note is that the various ground
states in this case are not seclected by any sym-
metry. Secondly, there 1s no simple field by which
one can select a particular ground state (For
small systems on¢ can calculate such a staggered
field, but a knowledge of such staggered field for
various grounds states of a macroscopic system is
clearly impossible)) Young and Kirkpatrick'!
point out that in the presence of a uniform field
or a random staggered field, both of which are
equivalent, as far as their coupling to a particular
ground state is concerned, the order parameter g
1S non-zero, but is not equal to that obtained
from time-averaging as in Mc calculations, i.e.,

y 1 [7 2
d1a = (f jg S:(I)df) (2.7)

= lim lim — z (85, %0 (2.8)

h—=0 N-—«

F d1a (2.9)

The last inequality follows from the fact, that
since the uniform field has a projection on a

ground state which is of the order N'/2 only, it

does not restrict the statistical sum to statesin the
neighbourhood of one ground state only.

3. SPIN-GLASS TRANSITION: MEAN FIELD
THEORY

Having seen the difficulties in finding a suitable
order parameter for the sg state, Ict us now
consider the theory of transition, first pro-
posed by Edwards and Andcrson (ga)®. The main
difficulty which occurs in the calculations ol the
statistical mechanics of random systems s the
calculation of the frec encrgy averaged over
random configurations i.c,

F=—kTdlogZiJ,;> (3.1)
ZUJ ) =Trexpl -fil1}J,,] (3.2)

where = th,7) "', Conliguration averaging of
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log Z, even 1n the simplest approximaton, pre-
sents constderable ditheutties. On the other hand,
the configuration averaging of Z1J,}! i1s not
dithicult. ka dealt with this problem by the
following mathematical trick, which has come to

be known as ‘Rephica Trick’. We can write

l —
log Z = im - (2" — 1)

n-0 N

(3.3)

Now Z" can be calculated for integral values of n
by noting that it is the partition function of n
non-interacting and tidentical replicas of the
system, with the same set of |J,,|. Thus

+ph . S}J (3.4)
=Jn | dgfexp{—i >

5353+ 8h Y 5%, } (3.5)

One ¢an now perform the configuration averag-
ing on Eq. (3.5). Using the distribution of Eq.
(2.3) we have

Z" = fﬂ dJ,, (2rJ?)7 12

ilm)

xexp[

N o n B
=[] ]] dS%exp{-=
t=1 a=1 2
ﬁljl

; Z’( Z §i‘-§j)1}{3.6)

i, \z=1

T

. 2
o=t ],
2J4

S Y JpS7- S

a=1 1y

+ph> S5+

where the prime on summation implies that the
double sum goes over nearest neighbours only.

Let us now look at the effect of these math-
ematical operations. We have performed the
configuration averaging and obtained an expres-
ston in which one has to calculate the partition
function of a uniform system. The price paid is
(a) the number of integration variables has been
raised from NS, variables to nNS* variables.

A

There are additional 4-spin interaction terms, in
which spin variable of one replica interact with
variables of the other replicas (b} at the end of
the calculation implied in Eq. (3.6), one has to
treat n as a continuous variable and take the limit
n-—» 9,

The first point here seems akin to the usual
diufficulties that are encountered in any general
problem of statistical mechanics, and the natural
way to proceed would be to formulate a mean
field approximation. However, for this purpose,
one needs to define an order parameter. The
definttion of an order parameter is quite straight
forward for systems where one knows how the
symmetry of the high temperature phase, which is
the same as that of the Hamiltonian, is broken
when the system undergoes the transition. The
sG situation forces us to examine afresh this
natural procedure. The reason 1s that defi-
nition of the order parameter and 1its non-zero
values contain implicit information about the
broken symmetry of the low temperature phase.
Below transition temperature, the system can
occur in a number of different phases which are
related to each other, 1n ordinary systems, by
simple symmetry operations. In order to describe
a single condensed phase one must break the
ergodicity i.e. restrict the usual canonical sum
over states to a particular neighbourhood in
phase space dictated by the order parameter. For
a ferromagnet, application of a small magnetic
field achieves this. The difficulties in the descrip-
tion of the sg state arise because we have
no simple way to describe the symmetry breaking
in condensed phase and no simple procedure for
restricting the canonical sum so that it runs over
states of one phase only.

To clarify these points further, let us follow the
historical development of the subject by describ-
ing the mean field theory of ea. To restrict
mathematical complexity, we consider only Ising
spins and take J, = 0. Then from (3.6)

"=y exp[ﬁh > Sf+ﬁzj2{z 3

{187] {ap) 1y

x A, (S28%)(528*) + %in}] (3.7)
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where (a §) indicate all the distinct pairs in which
o« # P, the matrix A;; = 1, if i and j are nearest
neighbours and zero otherwise, and Z is the
number of nearest neighbours. We shall use
another form of A,; later. To do the single site
mean ficld approximation, we reexpress the quar-
tic interaction by an integral transformation.

exp{}: Au(Sf'Sf)(SjS?)}
i}

+8JY y?ﬂS?S?]}

which gives

— 1
Z" — {1 Mast*exp| —3 T T

@p) i ap) vj

XA yit+ Z log ;}

X exp(ﬁh Y S+ BJ Y oy S“S”’)]}
E w} (3.8)

where C 1s an unimportant constant. In the single
site¢ approximation, the functional integral of
(3.8) 1s evaluated by the method of steepest
descent and finding a maxima 1n the subspace in
which y is independent of i. Thus the problem
reduces to finding the maximum of the
eXpression

- N[% ) (y“*“)’]- log ), exp[ﬁ{h ;S“

(24) (5]

+J Y }’“”S’S”}]

(aff)

(3.9)

with respect to n{n—1)/2 variables, y*. The
minimisation equation reads,

yP2 = BJ{S*S* DH,

where the averaging is performed with respect to
the single site Hamillonian Hy,

(3.10)

Ho=—-hY§*=J Y 858" (.11

(afi)

To obtain the self-consistent solution for (3.10)
EA made the simplest possible assumption of
taking all y* to be equal, which really seems to be
reasonable in view of the fact that all replicas are
identical.

Denoting {S*S¥ by q, one finds that g obeys
the self consistent equation (n — 0 limit is taken
at this state)

g = ‘[exp(—xz/Z) tanhz[(Zq)”zﬁjx dx

+ﬁh]\/ﬁ

(3.12)

Eq. (3.12) implies that ¢ = 01t the temperature T’
is above T, given by

T, =JZ" ]k, (3.13)

For T < T,, q takes on, non-zero values, becom-
ing unity at T =0. For T <7,

= 1(1 -T%/T}) (3.14)

Thus the sGc phase is charactetised by a
non-zero value of g, which Ea argued 1s equivalent
to the definition in Eq. (2.3). The corresponding
free energy in thisapproximation comes out to be

- 1
F/IN = —k,T| ZBp*J*(1 —q)*/2 +—— | dx
/ B[B ( q)/ \/ZTIj\A

x exp (— x*/2)log 2 cosh f{h + J(Zq)! f":c):l

(3.15)

From Eq. (3.15) the expression for susceptibility
follows to be

x = B(1-q) (3.16)

This expression exhibitscuspat?, . For7 > T,, it
has a Curie like behaviour, but as temperature is
decreased below T, 1t starts decreasing abruptly
due to development of non-zero values of 4.
Qualitative agrecment with cxperiments 1S
remarkable.

The difticulties of this elegant scheme showed
up, when Sherrington and Kirkpatrick (sx)'*
realiscd that the above equations are exuact for
the infinite ranged model for which 7 - N and
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J* = 0 such that =J- has the finite limit J?. If
the above solution is exact, it should hold at
all temperatures. But it was found that at low
tempearatures, the solution gives negative en-
tropy, which s an unphysical result. Tracing of
this difticulty, Ied to the finding that the replica
symmetnc extremum of (3.9) as chosen by ga is
not a true maxima, but rather a saddle point*®.
This implics an apparently sirange conscquence
that the values of y* giving the minimum free
energy break symmetry with respect to replicas.
There 18 no physical reason to treat different
replicas diflerently as they are introduced simiply
to calculate Z™.

Thus the strange problem at hand 1s to find the
proper extremum point, which makes a distinc-
tion among equnalent rephcas, and yields reas-
onable final answer when the n — 0 limit 1s taken.
One can immediately see that there are any
numbet of ways to break replica symmetry and
search for extrema for a general n would be very
difhcult. Any practical scheme has to parameter-
ise the matrix 3* in terms of a few variables and
search for extrema in this limited space.

The problem was first tackled by increasing the
number of order parameters to two, which led to
improvements but did not eliminate the diffi-
culty. Parisi'® invented a scheme to break replica
symmetry inaway which allowed introduction of
successively Increasing number of order para-
meters. He was then able to obtain a very
reasonable solution by introducing an infinity of
order parameters g(x) labelled by a continuous
variable x defined in the interval (0, 1). This 1s
certainly an odd resolution, because the number
ol order parameters is supposed to be small and
related to the symmetry breaking of the con-
densed phase. But as noted in the previous
section, the description of condensed phase in
terms of a few order parameters is not known,
due to our ignotance of the nature of symmetry
breaking in the sG transition.

Recently Parist'’ has offered a very nice physi-
cal interpretation to the continuum of order
parameters introduced above. The canonical pre-
scription to calculate the statistical expectation
value 1s

> O[S exp[~fH]

QO[s;]y = L&
>, exp—pH]
(5]
where O([ S,]) denotes an observable. This equa-
tion 1s not valid below a symmetry breaking
transition, because it does not describe a single
thermodynamic phase of the system, bul rathera
mixture of all possible condensed phases. We can
decompose this sum as the sum of pure equiiib-
rium states (i.e, states of single phase)

(3.17)

(3.18)

where a denotes a pure thermodynamic phase
and P, 1s a probabilistic weight given to the
phase «. The results of Monte-Carlo calculation
show clearly that for spin-glasses, the conhigur-
ation space consists of many valleys separated by
high mountains whose height goes to Infinity in
the thermodynamic limit. Since for all practical
purposes, the system will not jump from one
valley to another, each of these valleys can be
regarded as configuration space, belonging to a
single condensed phase. We can characterise a
phase by the value of the magnetisatton in each
sie:

mp = L3, ), (3.19)

For each phase, we can construct on raA order
parametes

| A
Gin ="ﬁ Z S, >:12 (3.20)

=1

It 18 quite reasonable that in the infinite volume
limit all states have the same value of gf,. A
disadvantage with the definition of g, 1sthat1tis
different from zero also for normal ferromag-
netic or antiferromagnetic systems. Something
which characterises a spin glass, or a glassy state
in general, can be obtained by studying the
overlap of magnetisations between two different
phases.

N
g = % mimf/N.

1= 1

(3.21)
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Flg} = Z P-::Pﬁ(s(q ”" qq'ﬁ) (3.22)
x, f

where P{g) is clearly the probability distribution

of g*, Parisi'” now introduces the function x(q)

where
q
x(g) = .[

which is monotonic and is obviously defined in
the interval 0-1. Now the inverse function g(x)
has the following significance. If we have only
pure phases which do not differ macroscopically,
the function g(x)1s a constant. If the function g(x)
is not a constant, macroscopically difierent pure
phases exist. Thus a variable g(x) is an essential
characteristic of the glassy phase. Parisi has given
an explicit demonstration of the equivalence
between ¢(x) defined in (3.23) and the one
obtained in his replica theory. With this, it
becomes clear that the mysterious breaking of
replica symmetry s Just the mathematical trans-
cription of the existence of infinitely many mac-
roscopically distinct pure thermodynamic states.
Use of single order parameter would ignore the
fact that the condensed phase 18 not unique.

dg P{g) (3.23)

4. TIME DEPENDENT PROPERTIES

The time dependent behaviour of spin glasses

also presents several complexities, foremost

among them being, very slow magnetic relax-
ation, and strong dependence of the behaviour on
magnetic history, including hysteresis. As dis-
cussed in Sec. 2, much of this behaviour can be
understood on the basis of figure 2, which shows
that the free energy contains several deep valleys
in phase space, and each valley itself contains
smaller hills and valleys. In a situation like this,
the system has to tunnel through several meta-
stable states successively (or parts of it tunnel
through barriers of different heights) which lead
to slow power law like decays to equilibrium. The
reason for hystercsis also becomes apparent
when one realises that there 18 no one-to-one
correspondence between states of different val-
leys, once the magnetic ficld is switched on. For
cxample, if the lowest free energy state In the

presence of the field 1s in one valley, while that in
the absence of the ficld is in another valley, the
system would naturally get trapped, in a meta-
stable state, when the field 1s switched on or off

from the equilibrium state, and there would be
hysteresis.

Therole of observation time in such a situation
has been strongly emphasised by Palmer'®.
Referring to figure 2, note that for a small
observation time (or temperature) the system
may be stuck in the phase region denoted as A,
but for longer times, it may cross smaller barriers
and be confined to a bigger valley C. Thus the
statistical sums used to calculate average pro-
perties will depend upon the observation time.
More and more states have 1o be included as the
observation time becomes bigger. Though it is
not often realised or explicitly stated, this is
something which is practised in almost any
calculation. Depending upon the time scale of the
process, one limits the degrees of freedom to be
included in the calculation. A nice example
provided by Palmer'® is that of adding milk to an
uncovered cup of hot coffec. Three processes
occur with varying time scales. First there is
mixing which occurs in seconds, then there is
cooling to the room temperature which occurs
over minutes and finally there is evaporation
which occurs over a period of hours. Since the
time scale of the three processes are fairly sep-
arated, the statistical mechanical description for
each process can be ‘given in terms of a
Hamiltonian which involves certain relevant de-
grees of freedom. For instance, to describe
mixing, one can ignore the degrees of freedom for
evaporation and introduce a heat bath 1o inhibit
cooling. Working with this restricted set of
degrees of freedom, usual methods of statistical
mechanics can be employed which amount to
taking observation time to infinity. Such simplifi-
cation in the above example is possible only
because the time scales of different processes are
well separated. Another way to view the dil-
ficulties of sg physics is the presence of a
wide continuum of relaxation times and lack of
our ability in sclecting fast degrees of freedom
from the slower ones.
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The infinite ranged model for which maximum
theorctical progress hdas been achieved shows
such a continuumy of  relaxation times.
Sompolinshy*” has associated the x-parameter of
Parist with the various time scale t, in the
problem; 1, corresponds 1o tunnelling between
valleys, with X being a measure of distance
between valleys in the configuration space.
Sompolinsky?’ has developed a time dependent
mean held theory which uses the correlation
function g{t) of Eq. (2.4} as the order parameter,
His calculation brings out very clearly how the
randomness induces time-persistent correlation
which gives rise to sG freezing.
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NEWS

AMERICAN NUCLEAR SOCIETY (ANS}-INFORMATION CENTER ON NUCLEAR
STANDARDS (ICONS)

ICONS was established in 1971 and since then the
Society's efforts have grown tremendously. To expand
this activity, to fulfill the needs of the industry, any
ofgamnisation interested in supporting a program that
ensures the growth of the Nuclear Industry, should
become a part of ICONS. Thus, the organisation can
play a significant role in ensuring the future of the
nuclear industry. With more and more nuclear units
coming on-line and the base contribution of nuclear

power increasing In the energy mix, the role of

standards has become increasingly significant to the
industry and safe use of nuclear energy.
Standards are the bulwark of the nuclear industry,

both in the construction and operation of nuclear
units. Without standards there would be no nuclear
plants. Without standards there would be no nuclear
future. Standards form a basic, invaluable reference
work. Any individual or organisation can directly
contribute to standards development and the viability
of the nuclear industry through a unique program
developed by the American Nuclear Society,

Further details can be had from: Mary Beth
Gardner, American Nuclear Society, 555 N.
Kensington Avenue, La Grange Park, Ilhnois 60525,
USA.




