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ABSTRACT

Direct evaluation of properties like net charges, dipole moments, quadrupole moments
and electrostatic potential of a molecule using modified fourier seri¢s summations based
on very accurate x-ray diffraction data is described. The approaches available for such
direct mtegration of charge densities over suitably partitioned moelecular volumes are
briefly reviewed. A possible methodology to get better details of strong intermolecular

interactions is proposed.

INTRODUCTION

X -RAY scattering is primarily due to the inter-
action of electromagnetic radiation with the
electrons in the crystal. Thus, with the availability
of very accurate x-ray diffraction data from a
single crystal, electron density distribution may
be obtained by Fourier methods. However, such
fourier maps are not readily informative of
properties hike net charges, dipole and higher
moments and electrostatic field gradients which
are dependent on the charge density distribution.
On the other hand, such properties are obtained
directly from dielectric measurements, micro-
wave data, esca techniques, Mossbauer spectra
and of course, from theoretical wavefunctions.
Also, these topological properties provide ex-
pression to other essential concepts of chemistry,
chemical bond, structure and structural stability.
Among the various mathematical techniques
invoked to extract such properties from x-ray
diffraction data, the most popular is the model-
ling of electron density with additional deforma-
tion parameters built into the regular least-
squares refinement methods! ™. Another tech-
nique, which will be briefly reviewed here, 1s the
direct integration of charge density over a
suitably defined (partitioned) volume to obtain
these one-¢leciron properties.

Charge integration

The general expression for the expectation
value of any derived property p based on the

electron density p(r) is

(p) =jﬁp(r)d3n (1)

where T is the volume of interest. This volume is
either over the whole crystal or over the molecule
or over the molecular fragment as the case may

be.
If, p(r) 1s from x-ray diffraction, then,

|
P(f)=?ZF(H)exp(—2uiH'r) (2)
H

with }" as the volume of the crystal unit cell and
F (H) as the structure factor. The contribution to
F(H) comes from the geometry and the indivi-
dual atomic scattering from each atom with
respect to all other atoms 1n the crystal.

By considering a ‘pro-molecule’, the molecule
before bond formation, the electron density p_
can be evaluated from

Po= 2. Pi

all atoms

where p; is the density of the ith Hartree-Fock
atom. Rewrtting (2), as

i
—;Z F(H)exp2nitl-vd’r

l
= {Ppro? +]’?Z‘5F{") explni i rd’r. (3)

Since the first form on the right side is nothing
but a superposition of spherical atoms it has no
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topological properties associated with jt. This
implies that in (1) p(r) can be replaced by Ap(r),
the so-<called ‘deformation density’ which is
calculated from AF(H) obtained from x-ray
measurements. So, (1) becomes

r> =-}-Vj P(r) 2 AF(H)exp 2niH n)d’r (4)
r

In principle, either F or AF can be used. The
volume of integration, 7, is in general of a
irregualr shape and hence the integration can be
performed only after subdividing the volume into
regular integrable subunits. These subunits are
generally taken as paralielopiped with their edges
parallel to the crystal axis and the dimensions are
normally in the range 0.1 to 0.2 A. Thus,

1
(P>=;§£

pr)d F(Hyexp2ziH-rd’r (5)

{

where t, now is the volume of the ith sub-unit, or

pr= %,Z F(H)Z'( pe)exp2riH-ed?r
i t

{

= _II?EF(H)EJ p(r)exp2riH(r—r))
H tJi
x exp2niH r, d%r (6)

with r, as the origin of the ith cell. So, in order to
calculate the total charge, Q, every structure
factor 1s to be multiplied by a shape transform
S, (H) of that volume of integration.

S (H) = j. g (Hexp2rniH(r—r,)d°r (7)

{

where g,(r) 1s the total charge in the sub-unit. So,
{6) becomes

@)= -:—;E F(H)Z S,(H)exp2mH - r,

1
H

with S (H) as the shape transform of the volume
of integration relative to the origin of the unit
cell. The corresponding expression for the stan-
dard deviation would be
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5((@)) = 57 5 T S S(H)a[F ()]

x o[ F(H)]y(H, H') 9)

where y is the correlation between the structure
factors (generally is zero). Similarly, the expres-
sion for the calculation of molecular dipole
moment with this type of sub-unit and shape
function definition ts

|
= —’;Z FH)dH)) exp2niH r;+) q,r,
H : é
(10)

where g; 1s the net charge in sub-unit i,
d(H) = I (F—r)exp2niH: (r—~r)d’r.
t

The first term, the sum over the dipole moments
of individual sub-units, is sensitive to the gnd size
and becomes smaller as the grid size decreases.
The second term represents the sub-unit charge
multiplied by the position vector. A detailed
derivation is given by Coppens?: 3.

The quadrupole moment, [,;, 1s expressed as
linear combination of the second moments of the
charge distribution. The expression for I,; cons-
ists of (i} the sub-unit quadrupole moments,
(i1) the sub-unit dipole moments, and (iii) the
sub-unit charge.

The electrostatic potential, ¢*, defined as

1 3
¢=j.]R'-l']p(r)d r (11)

at a point R outside the range of charge distri-
bution involves first the sum over the structure
factors for each sub-unit to obtain moments
followed by a summation of the type

di  aRi  Mapi
d) = Z ¢1l = Z {ﬁ:+ R? +2R15 (3R¢;Rﬁ5

—Rl5,5)+. . } {12)

where R; is the distance from ¢ to the ith sub-unit
origin, g, the net charge, p,; the dipole moment
and p,4; the quadrupole moment of the ith sub-
unit.
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Methods of space partitioning

Obviously, the choice of subdividing the other-
wise continuous charge density in the crystal to
facilitate integration is of major concern since the
topological one electron properties are restricted
to a well-defined molecule or a molecular frag-
ment. These volumes of integration can either
have sharp boundaries (at regions of zero flux of
electron density) or have overlapping regions
with the density in these regions shared by
adjacent fragments. However, any of those
schemes should satisfy

(i) ¥ V; =V, the volume of the unit cell

and (i) > q; =0, the unit cell is neutral.

The method of virial partitioning would be an
ideal method?, but in practice its application to
experimental densities is not straightforward.
Factors like noise in the experiment, uncertaining
due to temperature factors, systematic errors
Impose serious constraints.

In one approach, which involves the concept of
sharp boundaries between the volumes or frag-
ments, the volume definition is in terms of the
relative radii of adjacent atoms®. Consider two
atoms A and Bofradii R ;and R;if U ,;1s the unit
vector between A and B, then if a pointr;isatr,
and rg from A and B

(rA_ri)'UAB < (ry,—r) U,
5 »
R, R,

This implies that the boundary planes are formed
perpendicular to U,, and their position will
depend on theratio of R ,and R . Such partition-
ing is well suited for molecular crystals and the
radii in this methodology are varied around the
traditional van der Waal radin of atoms.
However, it is imperative that the ratio of radn
and not the individual value of radii is of prime
importance. Thus, while dividing this volume
into sub-units the grid should extend to within
the limits of the molecular framework in terms of
the van der Waal radu.

An alternative approach, where the volumes

(13)

e

A S— — J——

are allowed to overlap at regions of shared
density, has been suggested by Hirshfeld’. This
method adopts the so-called ‘Stockholder recipe’
where the molecular density i1s divided at each
point among the atoms of the molecule in
proportion to their respective contributions to
the promolecule density at that point.

P oroll) = 2, i)

ail atoms

and the sharing function

W (r) = p;(r)/p pro (r)

for the ith atom. Thus, in this method there is no
need for placing of arbitrary boundary surfaces.
Also, the defined molecules or atomic fragments
differ from the free atoms only to the extent the
molecule itself differs from superposition of free
atom densities.

A variation of this method is to use the
‘Stockholder recipe’ to partition the density over
the entire crystal®. This approach also would take
care of small effects in the intermolecular region,
but such effects can also bias the derivation of
topological properties.

DISCUSSION

It 1s generally observed that the values of the
derived properties obtained, based on different
methods described above are the same within the
Iimits of errors allowed by experiment and the
approximations in approach. Moreover, com-
parison of these values with the results from
other physico-chemical techniques generally
shows a very healthy trend. A point of caution is
that, since all the expressions derived above refer
to thermally-averaged density, iIn comparisons
particularly with results from other techniques
the thermal smeanng effects are to be considered.
An effort to reduce this bias considerably is1ouse
low termperature x-ray diffraction data. The
concept of partitioning the volume of integration
with the type of definmtions given appear to
reduce the bias at the peripheral regions of the
molecular volume since the functions are in terms
of atomic radn or atomi¢ deformations and are
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not centered at atomic nuclei but spread over the
entire molecule. The ‘Stockholder recipe’ for
crystal density partition generally gives lower
values for charge and moments than the one for
molecular density partition®. The partition based
on van der Waal radii®>® gives values inter-
mediate to these two methods. In fact, the
ambiguity in definition 1s still a fundamental
obstacle in any quantitative derivation of molec-
ular moments by x-ray methods®. But, such
limitations are also present in the density model-
ling by least-squares techniques’ and in the basis
set theoretical approach like ab-initio scF
calculations'®,

The various methods of partitioning described
above assume very little accumulation of density
in the intermolecular regions. Also the prom-
olecule 1s assumed to have zero moments. If there
are strong intermolecular effects like in charge-
transfer complexes, hydrogen bonded systems,
then by definition, the atomic deformation den-
sity Ap 1s 1nadequate to account clearly for such
effects. Also the atomic deformation density
varies mainly near the atoms and in the bonds.
The strong intermolecular effects can be better
seen if the atomic concept 1s replaced by a
molecular concept. We can now define a molecu-
lar deformation Ap, which comes from F(H)
based on spherically averaged molecular scatter-
ing factors g,.

gt = i zw:j;ﬁ(s.inatr_i,,‘/cflrd,,,l (14)

1=1 k=1
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wheref,, f, are atomic scattering factors r  is the
vector between jth and kth atom obtained from
the geometry derived from a high order refine-
ment. ¢1s 4z sin 8/ 4 and N 1s the number of atoms
in the molecular framework.

The pros and cons of such maps are being
studied. The obvious effect 1s that the inter-
molecular features show better details, but the
errors in spherical averaging might supercede
these benefits. Possibilities of using gas phase
molecular densities and 1solated molecule
theoretical densities after suitable origin specifi-
cations and modifications are being explored.
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