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ABSTRACT

This report, presented in two parts, deals with some novel circuitry involving logic gates which can
represent very faithfully the vector-matnx representation of Boolean algebra and statements in
propositional calculus (PC), quantified predicate logic (QPL) and multivalued logic (MvL). The
circuits that are presented will represent unary and binary relations involving m x n matrices in the
general theory of relations, which 1s extended to circuits specially designed for answering
complicated logical queries in information processing in general. One such shown in figure 4 can
perform the simultaneous truth checking of n-relations of the form a; R/, where R can be one of >,
=, <, = <,aswellas!, <a<l,,ljorl,..... or |, = a, purely in hardware. Novel circuits that
will delete the output of some of the relations a; R [; are presented. An elegant circuit for checking >,
=, <, of two numbers given in the binary system appears to be very promising and capable of being
used even in conventional computers. The circuitry given for a general relation of the type

\/ (a; REL b;) = ¢, and /\ (a; REL b;} = ¢ can yield the truth value of the 1.h.s. by the

j=11tlon j=lton
Boolean value (1 to 0) of c.

The circuits presented will work very well for use with array processors or for parallel processing
in suitably designed computers. The design of these circuits were arrived at as a consequence of the
application of the Boolean algebraic representation of the theory of relations (and their reversal and
complementation,) worked out by the author, and therefore a brief outline of this theory is given in

Section 2.

1. INTRODUCTION

HE novel circuitry that are presented in this
T paper were the consequence of the studies
made by the author on the vector-matrix rep-
resentation of Boolean algebras (denoted by
BVMF-Boolean  vector-matrix formalism) and
its application for solving problems 1in pro-
positional calculus (pPC), quantified predicate logic
(QPL) and multivalued logic (MvL)!' 2, The application
of Boolean matrices to the general theory of relations
with special reference to the answering of complicated
logical queries is contained in an unpublished report?,
which is being written for publication. This study led to
the discovery of interesting new hardware circuits and
these are presented in this paper. The most significant
of these is that in figure 4, capable of application in

* Part 11 of this article will appear in January 20, 1986 issue
of Current Science.

information processing, which is quite general, and
capable of answering any queries from a list of
attnbutes. This is treated in Section 4, and some new
basic circuits that can be applied for implementing the
general logical properties of MVL are discussed in
Section 3.

Although this paper deals essentially with hardware
circuits, the understanding of their principle as regards
the computer implementation of the theory of re-
lations requires a knowledge of the essentials of our
BVM formalism for MVL, and therefore the essential
formulae of this formalism are presented in Sectton 2.
Section 3 contains an account of the practical im-
plementation of the BYMF—in the form of circuits in
Section 3(a), with a table containing problems to which
these circuits can be applied in Section 3(b).

As a result of obtaining familiarity with the type of
logical circuits which became evident in this study,
some two or three similar problems in muiti-valued
logic also were found to be very well implemented on
circuits analogous to those developed for the theory of
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relations. The most general of these which can deal
with most of the problems containing queries in
information processing procedure is described 1In
Section 4 with special reference to the hardware.

Although these circuits have not yet been con-
structed and checked, simple vector-matrix equations
containing two and three vaniables have been im-
plemented in the form adopted by us, and there is no
reason why larger matrices cannot be implemented in
practice, with closely similar lines of approach in the
design of the hardware circuit. It is the belief of the
author that the general circuits described in Sections 4
and 5 will be of great utility in computer science.
Although they require a large amount of hardware, this
is over-shadowed by the great simplification of the
procedural equations 1n programing, as well as in the
large variety of problems in information processing
that can be implemented in these circuits.

It should be mentioned that this paper is writtenin a
pedagogic style and simple examples are presented
when needed as illustrations, and the most general
cases are considered only in Sections 3, 4 and 3. Also
the paper 1s self-contained, and section 2 contains a
brief summary of the formulation (BYMF) of MVL
which we have adopted. For editonal reasons, this
article 1s published 1n two parts in two consecutive
issues of the journal. However, the presentation is
continuous {e.g. in Section Nos., Equation Nos. etc.,)
and a common abstract 1s given in the beginning of
Part 1. with a common list of references at the end of
Part II. Part I deals essentially with BVMF and
associated circuits (essentially connected with logical
operations) while Part II 1s concerned more with
hardware circuits some of which may find application
even in conventional computers.

2. UNARY AND BINARY RELATIONS IN BVMF

(@) Vectors and matrices: Suppose that we have two
sets of = {a,,a;,...,an}and B ={b,,b,;, ..., b}
which are related by the m xn Boolean matnx
R = |R,;|, where R;;is equal to 1 if the relation a; R b;1s
true and O otherwise, Following?, a subset A of o
having for example, the clements {a;,a;, ..., ] is
represented by a 1 x m Boolean row vector (101
0. .. 1), which is designated by either of the symbols a
or {a|. More generally, the m-vector a (representing
the subset A of o) has I's corresponding to the (-
values of those a; of the full set of that are present in the
subset A, and 0's corresponding to the i-values of the
elements of of which are absent in the chosen subset A,
with similar conditions for the definition of the n-

vector b or (b| representing the subset B of &.
Obviously, the m-vector corresponding to the full set
o has 1’s for all the m elements a;, and this is indicated
by the symbol 1. Similarly the null set of o is denoted
by 0, and it has g; = O for alli = 1 to m. Since we often
have to refer to a subset and also its representation asa
vector, we also refer to the subset A by the vector a or
{ a| instead of the symbol for the subset, namely 4. So
also, the standard use of the row vector such as (a}isa
very reasonable on¢ from the way in which unary and
binary relations are written below (details are given in
ref 2,3)

With the above definitions, we can represent a unary
relation in the form a R b, which in BVYM formalism

becomes
(a] R = {(bl; ) a;R;; =b; Defn. (la,b)

It has the property that it gives as output the Boolean
value 1 for all the elements b, of B, which are related to
some element of 4, and O for all the other b;’s. It shouid
be noted that all the sums and products in Detn. ] are

Boolean.
So also, a binary relation 8 R b = ¢, where c 15 a

Boolean scalar, is given in Definition 2.

(a|R|b) = C;ZZ {a; R;; b)) = ¢;

c=0o0r1l Defn. (2a,b)

Expressed briefly, the consequence of the equation tn
Defn. 2 is that if {(a|R|b) = 0, then no q; is related via
R;;to any b; and vice versa. If (a|R|b) = 1, then some
a; are related to some b; (but not for nonej—See
Section 3 for examples of both unary and binary
relations as dealt with in BVMF.

It is necessary to define two more matrices related to
R—namely R’, for the reverse relation, and R*, for the
complementary relation—as in Defns (3) and (4).

' (R'); = Rj; = R;; (3)
Complement of R : (R); = R{; = 1—-RK;; (4)

It is readily verified that R defines the relation of R #
in the reverse sense. Thus

oA R =R o

Reverse of R

Defn. (5)

Also, R® stands for the “non-relation” as in Defn. {6):
(See Table 1{a) for an example).
If for the sets .«of and A, a; R,; b, = 0, then

a, Ri; b, = 1 and vice versa Defn. (6)
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Although the matrix |R|;| represents the reverse
relation from 2 10 &/, the two matrices |R|and |R*| do
not necessarily satisfy the equation |R|R'| = |R'|R]
= |E|. Thus, {a]|R| = (b]yields B containing ail b; of
4 that are related to those a, that are present in the set
A. Then (b|R‘| = (a’] gives, by @', ail elements of .o
that are related to every member of b. The set 4’ thus
obtained will surely contain all elements of A, but may
be a larger set—i.e. A" 2 A. As an example, if B stands
for the nephews of the unclesin A, then { a|R| yields all
the nephews, but these nephews may have uncles, other
than those included in 4,sothat 4" 2 A. (Seeref 3fora
different exampie, explained more fully.)

The complement a° of the vector a is defined by (7a):

af = Complement of a: af = 1 —aq,

i=1tom Defn. (7a)

Thus the complement vector a° contains 1’s for all a;
that are absent in the set a, and vice versa. Obviously,
(a°Y = a and the set A€ is the complement of the set A
in & . Thus, the set-theoretical equations in (7b)lead to
the corresponding equations in (7¢) for the representa-
tive vectors for the sets concerned.

A= ~AAVA =A ANA = (7b)

a =(agf,aPa=1axa" =0 (7¢)

3. PRACTICAL IMPLEMENTATION OF THE
VECTOR-MATRIX FORMALISM

(a}) Hardware

Figures 1 and 2 represent the circuit diagrams
corresponding to the implementation of Eqns (1) and
(2) for unary and binary relations respectively. It is
readily seen that the circuits are faithful represen-
tations by logic chips of the logical operations con-
tained on the l.hs. of (1) and (2). Thus, figure 1
contains the logic chip AND for products such as g; R;;
(which can be written in Boolean algebra as g, ® R;;)
and the summation contained in Eq. (1) is represented
by the logical chips OR and the Boolean algebraic
symbol @. The equation in (1), expanded, is

(ﬂi®R£j)®(ﬂz ®R2j)® o @D
(@ ®Ruj)=b;,j=1ton (8)

For simplicity, m and n are both taken to be equal to 3
in figures 1 and 2. All the essential principles involved
in constructing the circuit are available in this example,
which can be readily generalized to an m-vector { af,an
n-vector { b|,and an m x n matrix | R |. We shall explain
the circuits with reference to the example given.

S
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Figure 2(a). Additional circuit required to calculate

Z Z a; R;; b, = c. { g|is the intermediate output from

ﬁgure 1, and in addition, the binary relation {g|E\b )
= ¢ 1s implemented.
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Figure 2(b). Circuit for complementing the m-vectora
of figure 2(a) when needed, by setting the sign switch
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Figure 2(c). Circuit for the union of two sets which
implements Eq. (10a).

() h
AND AND ...@ . AND
’@ ©

Figure 2(d). Circuit for implementing Eq. (10b) for
the intersection of two sets.

e

Figure 2(e). Circuit to check the equivalence of two
sets G and B, analogous to checking for common
elements between them as shown in figure 2(b).

Consider figure 1. The matrix | R;;| corresponding to
the relation R is given and can be represented as signals
having the values 1 or 0in the m x n values of R;;. Then,
if the Boolean values of a,, a,, a4 are input, all the three
Boolean outputs b,, b,, by (corresponding to three
linear equaitions) are obtained straightaway and the
vector {b| becomes available as output. Thus a
complicated problem which in conventional computer
usage is calculated by a sequence of successive state-
ments, can all be implemented in one step, by inputting
all a;, when all the b; become available straightaway.

Coming to the implementation of Eq. (2) which 1s
given in figure 2(a), the process is as follows. First, the

outcome of the matrix product ) g, R;; = g, is con-
i

structed in exactly the same manner as in figure 1. We
denote the output as g. Then, the binary relation
(a{R}b) = c¢ is equivalent to the Boolean equation
(9), in which g; (j = 1 to n) stands for the 1.h.s of (8):

9: b)) DG, R5)D. .. D@ ®b,)=¢ ()

Eq. (9) is faithfully simulated by the logic circuil in
figure 2(a) and the two equations (8) and (9) together
give the truth value ¢ of the binary relation (a|R{b)

= ¢. The meaning of this binary relation correspond-
ing to the values of ¢ equal 1o 0 or 1 is as follows (For
more details see ref 3).

(1) If some element(s) of A are related by R to some
element(s) of B, then {(a|R!b) =1 and vice

versa. (9a)
(i1) If no element of A is related to any element of B,
then (alR}|b)> = 0 and vice versa. (9b)

Thus, if there 1s at least one pair (a;, b;) which 1s related,
then it yields a; R;; b; = 1, and makes one of the terms
in the Boolean sum in (9) to be non-zero, so that,¢ = 1.
If none are so related, then ¢ is obviously equal to 0. We

shall generalize the results in (9a) and (9b) in Section 3.

(b) Typical problems for practical application

We consider the set of students % and of professors
P related by the direct relation s kit p with matrix | P|
as its representation and the reverse relation from
professors & to students & denoted by p 5 s, and

having the matrix |S| = | P']. We shall also use the non-
relations p© and §° as defined in Eq. (4). Using these
matrices, examples involving unary relations and their
vector-matrix representation are given tn table 1(a).
Similarly, some examples of applications of binary
relations are given in table 1(b).

We shall not comment on these, except to point out
that only relations of the type contatned in Detns (1)
and (2) are employed for this purpose and these can be
taken care of by the circuitry in figures 1 and 2(a). In
addition, we need operators for logical relations such
as union and intersection which are represented in our
notation by @ and ). The implementation of these is
done by using Egqns (10a,b) below for two n-vectors:

(AUB=C)=(a@®b = ¢}

a;ORb;, =c;,j=1ton (10a)
(ANB=C)=(@a®b =c)—
a; AND b, =c;.j=1ton (10b)
For complementation, we use
(~A=B)=(a*=b)—a;=b,j=11ton (10¢)

in which af=1-4; from Eq. (4). yelding a} =0
ifa; = 1 and a§ = 1 1f a, = 0. The circuitry for all these
and other special circuit elements, or components, arc
described in Section 3(¢). In Section 4, we shall consider
the application of our ideas for building a general
circuit block (figure 4) which can be applied for



16

Current Science, January S, 1986, Vol. 55, No. |

-

Table 1(8) Examples illustruting queries connected with unary
Boaolean relations

Boolean vector-
matnx equation

Si Description of the
No refation employed

——

| Who are all the professors (p)
who teach the students in s

2 Who are all the professors (p)
who do not teach any student in
s? (stPy= (p’

3 Who are all the students {§)
attencing classes taken by pro-

(sIPl = {p]

fessors that teach the set s (s|PIP| = (5]
4 Which professors {(p) in p teach

some student in §? (sIPI ®{pl= {p]
5  Which students (s') not in the set

s {but in ¥) take classes with

professors in the set s? (pIPI{® (5| = {5

Table 1(b} Examples to illustrate use of binary Boolean
relations

BVM-equation for
the condition to
be checked

Sl Description of the
No relation considered

1 Check if at least one student of §
is related by P to one of p

2 Check if all members of set p are
not related by S to any of the
students s.

3 Check if the professors p teach-
ing $ have any members in
common with the professors p’
teaching s'. (s|P{P"|s') = |

4 In serial number 3 if the answer §3| P| = ém

(s|Pip) =1

(piS|s) =0

s “yes”, list the set of professors S|Pl = {p'|
{po) common to both. pI® (p'l = (pol

answering any query about a list of objects having a
number of attributes, as are required for information
processing. In Sections 4(b) and 4(c) circuits specially
relevant to that in figure 4 are presented.

(¢) General circuits for Boolean algebra in BVMF and
for logical checks

(1) Complementation. For obtaining the complement
{a* of an n-vector (a} = (a,, a;, .. ., a,), an elegant
procedure is to use the circuit in figure 2(b) with the
switch o, being set to give either 1 or 0. As indicated in
figure 2(b), all the components a; are complemented to
give a; = ajif g,1s set to 0, and they are left unchanged
if o, is set to 1 so that a; = g; for all j.

It 13 obvious that this complementation switch and
the associated circuitry shown in figure 2(b) can be
generalized to the complementation of any n-vector or
any m x n Boolean matnx.

(1) Union and Intersection: The circuitry for these
are given in figures 2(c), (d) based on the operations
given by Eqns (10a) and (10b) which are to be applied
between Boolean numbers a; and b; in order to obtain
¢;, the components of the n-vector ¢ which represents
set C which is the union, or the intersection, of A and B
respectively.

(i) Binary relation using the operator E: This is
illustrated in figure 2(a) where the circuitry in the
bottom half implements the equation gEb = c. Its
mode of action from a general point of view may be
described by the following equations (10d) and (10e):

Y c;=c;c, ORc; ORCy ... ORc,=¢ (10¢)

4

As mentioned earlier, the value ¢ = 1 indicates that
there is at least one member in common between the n-
vectors g and b, and G N B £@. If ¢ = 0, it indicates
that there are none—ie. GO B = Q.

(iv) Agreement operator G: Just as we checked in
subsection (iii) above for there being at least one
element in common between the n-vectors g and b, we
can also set up a formula for checking if all elements g;
of g are identical with the corresponding elements b; of
b. The circuit diagram is given in figure 2(¢), and 1t 1s
based on the logical equations (10f) and (10g)—
namely:

g;EQUb;=d;,j=1ton (10f)

d, ANDd, ANDd,, ... ,ANDd, =d  (10g)

It is obvious that d will be 1 only if every element g; of g
is equal to the corresponding b; of b,—with both g;and
b, being equal to 1, or with both g;and b; being equal to
0. This operator EQU in multivalued logic (between g
and b)checks the set-theoretical relation G = B,via the
Boolean algebraic (BA-n)equation: g; = b;forallj = |
to n.

It is an interesting fact that Eqns (10d, ¢) and Eqns
(10f, g) represent the truth value of the predicate logic
equations between g and b with the four different types
of quantifiers that are used in conventional predicate

logic. These are
(3)(g; & b)) for (10d,e) with ¢ =1 (10h)



Current Science, January 5, 1986, Vol. 55, No. 1

}7

F(3j)g; &) for (10d,e) withc =0  (101)
(Vj)g; = b;) for (10fg) with ¢ = 1 (10))
3 (Vj)g; = b;) tor (10f,g) with c =0  (10k)

These equations, however, lead us deeply into pre-
dicate logic’ and the full consequences of these will be
described in a separate report. (See ref 2 for the reason
why the symbol 5 is used for negating a quantifier,
and not |, in common usage.)

Our purpose in this section has been to give some
typical applications of our BYMF formalism for con-
structing logic circuits using standard logic gates and
set these up to deal with different types of logical
connectives and checks. A generalization of these 1s
given In Section 35, in Part I1.

4. CIRCUITS FOR ANSWERING QUERIES IN
INFORMATION PROCESSING.

(a) Simple example of examination marks

We shall consider a particular example before we
consider the general case. Suppose that we are given
the marks a;; secured by each candidate in tests labelled
j=1 to n, taken by m candidates, listed senally by
numbers i = 1 to m. (We omit i for convenience tn a;;.)
It 1s required to find out if the candidate (i) has secured
marks a,, a,, ..., a,, equal to or greater than the
passinglevels,,Z,, ... ,{,, forallthetests | ton The
relevant logical equation, giving an output 6 = 1 if the
candidate has passed in all the tests, and b =0
otherwise, can be given by Eq. (11) below:

(a, 2 {,)AND{a, 2 ¢;)AND .. . AND (g, = (¢, )= b
(11)

The circuitry for this 1s shown in figure 3 for one
candidate whose senal number istakenasi = 1,and it
will be readily seen that it is a closely faithful represen-
tation of Eq. (11) in hardware. It is only necessary to
provide a hardware circuit for the check a =2 7. We

Figure 3. Simple circuit for checking the passing
marks of a candidate in a number of tests.

shall give below in Section 4(b) a circuit with logical
gates which will perform the arithmetical operation of
finding out whethera > £,a = £, a < ¢. Obviously, we
can have a series of such circuits withindex i = 1 to m
to give b;, the outcome of the total examination.

It is obvious that there will be a great saving in time
since all the checks for the n tests taken by the
candidate are done in one go. So also, we can input the
data for m candidates and have all of them processed to
give b, to b, 1n one cycle of the computer. The practical
application of the circuit in VLSI 1s worth study.

(b) General circuit for answering many queries.

We shall discuss first the hardware circuitry for this
which is given in figure 4. Taking the first horizontal
row, and ignoring the symbol m = 1, the relevant
Boolean algebraic equation can be written as follows:

(@, Ry ;) AND{a, R, £,)AND .. . AND(q, R, Z,}) = b
(12)

This Eq. (12) differs from (11) only in the tact that the
relation between the a/’s and /s can be more general
than the check given in Eq. (11). Hence in figure 4 1t is
referred to as REL, standing for ‘relation’. Therefore it
should deal with vanous types of relations as given 1n

(13) below
a>{la=C¢a<{l az{ a< {;
(1{3{4{2,&_—‘(]01{{20!1{3(* (13)

The circutt for all these 1s described 1in Section 4(¢), in
Part II. Here we accept the fact that the relation REL

' “» D
* ”;{i"'g_)l :'{? —I"‘gl{t

REL -1 0 p’{ﬂEL ?}—4
. L - {'_-*_”_h-
w Q
s Pq
m .

Figure 4. Hardware circuitry for the eguaton

z (ﬂuR;L’j)tb“l‘= 1 to m.

J=1
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having the logico-arithmetic forms as given in {13} can
all be incorporated into one block.

As was evident for the various tests in an examin-
ation (figure 3), here also, we can have different checks
REL-i. REL-2.....REL-n whereeach REL may be of
a different type, and the common sauisfying of all the n
checking relations can be worked out simultaneously
in hardware. If ali the n tests are included for passing
the total examination, then the logic gates named
“delete”. indicated by D in figure 4 1s not needed.
However. if only a partial checking 1s needed—say the
checks via REL-1, REL-3, ..., REL-n but not all of
them—then those that are not needed can be deleted
by the gate D which employs only very simple logical
circuit elements. Thus, if the test j 1s not to be included,
then we have only to set the switch s; to produce a
signal 1 for the appropriate D-gate to render the check
of REL-j inoperative. If the signals s;1s set to be 0, then
the Boolean output from REL-j 1s passed on, un-
changed to the rest of the circuit by the deletion gate

D,. The circuitry for this is extremely simple and it is
given ia Section 4(c), in Part IL

With the above facilities provided by the logic block
given in figure 4, it is believed that most of the needs in
information processing related to queries can be met
by this block. Further, all the processes are done in
hardware, and therefore operatable in a small number
of computer cycles, rather than in n steps as in software
using sequential steps in the program.
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ANNOUNCEMENTS

KARNATAK ASSOCIATION FOR THE CULTIVATION OF SCIENCE
[SCIENCE AWARDS for 1985]

The following are the receipients of the Science
awards by the Karnatak Association for the
Advancement of Science 1985. Dr B. V. Shela of ISRO
Satellite Centre (Mathematics); Dr R. K.

Somashekhar, Department of Botany, Bangalore
University, Dr Nazeer Ahmed, Department of
Zoology, Karnatak University, Dharwad (Biology).

Co
NORMAN BORLAUG AWARD 1985

Dr K. L. Chadha, Director of the Indian Institute of
Horticultural Research, Bangalore, has been awarded
the 1985 Borlaug Award for his significant contri-
butions to agriculture.

The Borlaug Award, instituted by the Coromandal
Fertilisers in honour of the Nobel prize winning
agricultural scientist Dr Norman Borlaug, carries a
gold medal, cash prize of Rs.20,000 and ctation.

Dr Chadha, an authority on mango breeding and

cultivation, has made significant contributions in
developing agro-technique for many horticultural
Crops.

Dr Chadha is the project coordinator in the Centre
of Excellence in Tropical Horticulture of FAO-UNDP
at Bangalore. Increased productivity and reduced cost
of cultivation in fruit crops are his major research
achievements. Dr Chadha is also taking keen interest
in Current Science.




