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ABSTRACT

Analytical results are reported for magnetic viscoelastic interaction on one-dimensional wave
propagation in a solid medium. The relevent frequency equations have been obtained by solving
equations of viscoelasticity of Reiss type, taking into account the effect of a magnetic ficld and the
electromagnetic equations of Maxwell. The nature of frequency has been discussed in different cases.

. INTRODUCTION

HE study of interaction of an externally applied

magnetic field on the elastic motion and defor-
mation of a solid is known as magnetoelasticity. This
phenomencn is interlocking in character and has
extensive practical applications in diverse ficlds such as
geophysics, acoustics, damping of acoustic waves 1n a
magnetic field and so on. In recent years the problems
of magneto elastic waves and vibrations are receiving
greater attention by many investigators' >, Although,
the effect of magnetic field on the elastic field is small,
the theory of magnetoelasticity is developed owing to
its importance in geophysical, seismological and cos-
mological problems and to some extent to practical
problems when the magnetic field is sufficiently
large® 8 In discussing the propagation of seismic
waves from the earth’s mantle to its core, Cagniard®
suggested that the existence of the earth’s magnetic
field should be considered for explaining certain
phenomena of magnetoelastic waves. Subsequently,
Knopoff !? investigated the effects of magnetic field on
the propagation of elastic waves on a geophysical scale.
Magnetoelastic interaction on geophysical problems
were investigated by other workers!!'!2, Dattal?
considered the problem of magnetoviscoelastic inter-
action on radial vibration of a cylinder. The problem of
magnetoelastic wave propagation In a thermal field
was investigated by Paria'®. Some problems of mag-
netoelastic, magnetoviscoelastic waves and vibrations
were investigated by Datta'® ¢, As a sequel to these
papers the present paper is an attempt to investigate
some aspects of dispersion of waves In viscoelastic
solid of Reiss type acted upon by a magnetic field. The
relevant frequency equations have been obtained and
the nature of frequency has been discussed in different
cases,

2. GENERAL THEORY AND FUNDAMENTAL
EQUATIONS

To investigate the interaction of the magnetic field
and the viscoelastic field, we need to solve the appro-
priate equations describing the above two fields. The
Maxwetl equations governing the electromagnetic field

are
CuriH=J , divB =0

0B
ot ’

where the displacement current 1s neglected. The
generalised Ohm’s law in the deformable medium 1s

(2.1)
Curl £ =

B=uH

J =6[E+a—ux B] (2.2)
ot

In eqgs (2.1)and (2.2), H, B, E and J respectively denote

the magnetic intensity, magnetic induction, electric

intensity and current density vectors. 4, is the magnetic

permeability of the body urepresents the displacement

vector in the strained solid and ¢ is the electncal

conductivity.
The stress-strain relation in a viscoelastic medium of

Reiss type!’ may be taken as

08
Ty = AB‘SU‘*" Z,UEU + j.#'a—t'(s”
an 329 (}zeij
' L ] L 2'3
s AR R LA Bt )

where 1, is the stress tensor, e;; ts the strain tensor, 4, 4',
A", u, u', u" being the material constants.
The strain displacement relations are

ey = i+ uy). (24)

The stress equations of motion are
Tij g + Fi = Pﬁj, (25)
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where @ = (u,. u,. 4y )18 the displacement vector p the
density and F = (F,, F;, F3)1s the body force per unit
volume,

I there are no body force apart from the Lorentz

force, we take

F=JxB (2.6)

From (2.1} to (2.6} it follows that the electromagnetic
fietd is in interaction with the viscoelastic field,

3. REDUCTION TO THE CASE OF A UNI
DIRECTIONAL MOTION

We consider the case of the propagation of disturb-
ance in one direction, say x-direction only. The zaxis 1s
taken in the direction of original magnetic field
(primary) H.. Then the displacement u has the com-
ponents (u, 0, 0) where u(x, t) and all the above vector
quantities depend on x and t only. Also, let the
magnetic field be such that

where Hy, = (0,0, H.) 1s the initial magnetic field
acting paralle! to z-axis and h = (0,0, h,) is a small
perturbation in the held.

From the first equation of (2.1) and {(2.2) we have

. ~ H,cu Ch,
GP_vHat ox ’

where v, = 1/u,0. Also, we have from the third
equation of (2.1) and (2.2)

ch, ah, . dly

(3.2)

= . 33
g MaxT T axat 3.3
The first and last equations of (2.1) leads to
ch,
JxB =[—-,u,H,-~, 0, 0} (3.4)
0X

where we have neglected the products of small quan-
tities of w and h. Eliminating ¢;; from (2.3)and (2.4) and
substituting the resulting components of stresses in the
equations of motion (2.5) and using (2.6) and (3.4), we
get

0*u du
— 4+ A+ 2u’
d*u oh, 0*u
’” ’ gH: _ 3'5
A+ W) oo — el =05y 39)

4. SOLUTION OF THE PROBLEM AND
DISCUSSIONS OF THE RESULTS

We consider the case when etectrical conductivity of
the medium is finite. In this case, we take
u = u' expli(yx —wt)]
h, = h exp[i(yx - wt)] 4.1)
E, = E'expli(yx —wt)]
where u', A’, E' are constants, y is the wave velocity and
w is the frequency of the wave,
Substituting the values of u, h,, E, in (3.2), (3.3) and

(3.5) and then ecliminating u’, h’, E’ from resuiting
equations, we have the wave velocity equation given by

pliw ~vyy){w?(1 +C,7) — A,y +iB, 7w}
~p H}y*w?i =0 (4.2)

where,
A+2
A, =T2F
p
Ar+2 '
g ="T7F (4.3)
p
_‘- Aﬂ"+ 2!_1"
' o

Equation (4.2) can be wntten in the form

iw*+ Pw’ +pio—R =0 (4.4)
where,
_ v (L +C %)+ Byy?
(1+C,y%)
H?y?
A1T2+Bl?4"ﬂ +#¢ > A
- (4.5)
Y (1 +C179)
R=Avyy*

We will study two different cases: (1) when the wave
length L = 2n/y is real, ie. y is real, (2) when the
frequency w 1s real.

Case 1. If we take y to be real, then from the coef-
ficients of (4.4) it follows that the possibilities for the
roots of ware (i) 3 imaginary, no real (i) one imaginary,
2 real. For an imaginary root of @ say {(a+iff) any
equation of (4.1) is of the form Cexpli{yx—
(@+iB)t}] = Cexpli(yx —at)exp(ft)]. This sort of
solution admits of a variety of interpretations depend-
ing on the nature of a and f§. Since we are considering
viscoelastic waves, they can reflect damping charac-
teristics in time, only when f < 0. Also, it is evident



Current Science, January 5, 1986, Vol. 55, No. |

21

from (44) and (4.5) that the frequencies of the
magnetoviscoelastic waves depend on the wavelength
in a2 nonlinear manner and so different wavelengths
will propagate with different phase velocities. We can,
therefore, conclude that magnetoviscoelastic waves are
dispersive.

Case 2. Jf we take w to be real we rewrite (4.2) in the
form

1*=Sy2+T=0 (4.6)
where,
. Hz
wivy —B 0’ +iw’C +iwA, + OFe
P
8 =
AI“H""Blvﬂiw—_CI VH(UZ
(4.7
i’
T

Byvyiw+Civyw? - A, v,

We find that y has two pairs of equal and oppostte
imaginary roots. Let the roots be +(a' +iff),
+ (y' + id). When the roots are (&' +iff’) and (y' +id’)
then the amplitude of the wave contains the term like
exp (— f'x) and exp (— &'x) which show that the ampli-
tude die out in the x-direction, provided B’ and o' are
positive,

Group Velocity: As already remarked, the waves are
dispersive and as the group velocity of wave 1s a
characteristic velocity that represents the speed with
which ¢nergy is propagated. We now calculate the
group velocity of the dispersive waves.

Putting C = w/y (phase velocity) in (4.2), we have,

C4+P1C2+'§91=0 (48)
where,
p {(iByw — A;) —vyin(l +Cy?)]
1 (1+C,y?)
(4.9)
uH?
l;ol — 2
p(1 +Cyy7)
Now, group velocity C, of the wave can be written as
C
C, =

. @ oC
C Jw

- C(2P,C? +4C% 410
- 2 4 1aPL an r )
ow dw

[by (4.8) and (4.9)]

It is seen that if the frequency of the wave increases i.e.
for large values of w, C; — oo. This implies that a wave
packet consisting of infinitesimally short wavelengths
will propagate with infinte velocity which is physically
impossible. Therefore, infinite C, with @ — o is
inadmussible in our problem, however, for small values
of w, we find that the group velocity of the waves 1s
equal to the phase velocity of the wave.
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