SHORT COMMUNICATIONS

POTENTIAL ENERGY CURVES OF D STATES OF SiF AND SICI

J. B. BHARTIYA and S. H. BEHERE*

Department of Physics, S. B. Science College, Aurangabad 431 001, India.

* Department of Physics, Marathwada University, Aurangabad 431 004, India.

THE emission spectrum of SiF has shown a number of electronic states, a few of them being Rydberg states. The potential energy curves of $X^2\pi$, $A^2\Sigma$, $B^2\Sigma$ and $C^2\Sigma$ states have been reported by Singh and Rai¹. Later Ramkrishnarao et al² also reported the potential energy curves of $X^2\pi$, $A^2\Sigma$, $A^4\Sigma$, $B^2\Sigma$, $C^2\Delta$, $C'^2\pi$, $D'^2\pi$ and $D^2\Sigma$ states of SiF and estimated the dissociation energy by curve-fitting method in which Hulburt-Hirschfelder³ potential (H-H potential) function was used for the ground state. Recent analysis⁴ of D-X transition of SiF yielded accurate constants compared with those of earlier workers. We have used these constants for the construction of RKRV⁵ curves.

The spectrum of SiCl was studied by many workers earlier. Venkataramanaiah and Lakshman⁶ reported the potential energy curves of $X^2\pi$, $B^2\Sigma$, $B'^2\Delta$ and $C^2\pi$ states of SiCl and estimated the dissociation energy of SiCl by curve-fitting method using the H-H potential function for the ground state. The high resolution studies of D-X transition⁷ of SiCl have reported constants of D² Σ state. These constants of the D state of SiCl are used in the present case for the construction of RKRV curves.

The molecular constants of the D states of SiF and SiCl are presented in table 1 and the RKRV turning points are presented in table 2 respectively.

We have also applied the H-H potential function to the ground states of SiF and SiCl, with revised constants and the dissociation energies are estimated. In the case of SiF the Value of D_0^0 we obtained is 4.75 ± 0.011 eV and for SiCl it is 4.09 ± 0.017 eV. These

Table 1 Molecular Constants* D²∑ states

Molecule	ω,	$\omega_e x_e$	α_e	re	B,
SiF SiCl		• • • •	0.004794 0.001568		

^{*} All constants are in cm⁻¹ except r, which is in A° unit.

Table 2 RKR turning points and energy values. SiF $D^2\Sigma$ state $T_2 = 47419.64 \text{ cm}^{-1}$

	G(v)	$G(v) + T_e$	r_{min}	r _{min}
บ	(cm ^{~1})	(cm ⁻¹)	(A °)	(A °)
0	499.01	47918.65	1.4937	1.6029
1	1488.78	48908.42	1.4592	1.6493
2	2467.56	49887.20	1.4369	1.6835
3	3435.33	50854.97	1.4197	1.7128
4	4392.11	51811.75	1.4054	1.7394
5	5337.89	52757.53	1.3931	1.7641
6	6272.67	53692.31	1.3822	1.7874
7	7196.46	54616.10	1.3726	1.8098
8	8109,24	55528.88	1.3635	1.8315
9	9011.03	56430.67	1.3553	1.8525
10	9901.82	57321.46	1.3477	1.8731
	SiCl D ² Σ	state $T_e = 4484$	3.63 cm ⁻¹	
0	327.28	45170.91	1.9031	2.0183
1	977.56	45821.19	1.8660	2.0662
2	1622.14	46465.77	1.8418	2.1012
3	2261.02	47104.65	1.8228	2.1310
4	2894.20	47737.83	1.8070	2.1576
5	3521.68	48365.31	1.7933	2.1825
6	4143.46	48987.09	1.7810	2.2058
7	4759.54	49603.17	1.7700	2.2280
8	5369.92	50213.55	1.7600	2.2494
9	5974.60	50818.23	1.7506	2.2700
0	6573.58	51417.21	1.7420	2.2902

values are in good agreement with the values 4.846 eV and 4.15 eV reported by Ramkrishnarao et al² and Venkataramanaiah et al⁶ respectively.

14 May 1985; Revised 30 August 1985

- 1. Singh, R. B. and Rai, D. K., Indian J. Pure. Appl. Phys., 1966, 4, 102.
- 2. Ramakrishna Rao, T. V. and Reddy, R. R., Curr, Sci., 1979, 48, 96.
- 3. Hulbert, H. M. and Hirschfelder, J. O., J. Chem. Phys., 1941, 9, 61.
- 4. Houbrechts, Y., Dubois, I. and Bredohl, H., J. Phys., 1979, B12, 2137.
- 5. Vanderslice, J. T., Mason, E. A., Maisch, W. G. and Lippincott, E. R., J. Mol. Spectrosc., 1960, 33, 614.
- 6. Venkataramanaiah, M. and Lakshman, S. V. J., J. Quant. Spectro. Radiat. Transfer, 1981, 26, 11.
- Bredohl, H., Cornet, R., Dubois, I. and Melen F. J. Phys., 1982, B15, 727.