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SHORT COMMUNICATIONS

NONLINEAR VIBRATIONS OF PARABOLIC
PLATES AT ELEVATED TEMPERATURE
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Departments of Mathematics and Physics,
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STUDIES on nonlinear vibrations of thermally-stressed
elastic plates are very few when compared with those
without thermal effect. In aerospace engineering and in
vibrations of machine parts, the problems have 10 be
treated with nonlinear theory, when complementary
stresses in the middle plane of the plate are taken into
account. As a follow-up of an earlier paper' on
nonlinear vibration analysis of triangular plates at
elevated temperature, the present study 1s analyzed
with Berger’s approximation?®.

Governing equations.
Free thermal vibrations of heated elastic plates are
governed by the following equations’

DV‘W""KZVZW'*'phW_n = 0, (1)
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where
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and u,v,w are displacement components, a, the coef-
ficient of thermal expansion, p the density per unt
mass, v the Poisson’s ratio, E the Young’s modulus and
T (x,y,2) is the temperature distribution within the
plate given by?

T(x:}HZ}: Tﬂ(x:y}'{"zr(x&y)r (5)

in which 1,{x, y) and 1(x, y) satisfly certain temperature
distribution differential equations® and K* is indepen-

dent of x and y but involves time t,

Method of solution for a parabolic plate

We consider a parabolic plate with boundary given by

x? 5(20'}’) y =0 (6)

For this plate-shape clamped along the boundary the
deflection w 1s expressed in the form
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Combining (1) and (4) and applying Galerkin pro-
cedure one gets
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Performing the necessary integrations we arrive at the
equation

F(0)[6.694 D —20231a*K?)
+0.0288a*phAF (1) =0, (9)

in which K2 is still unknown which is obtained by
integrating (2) over the area of the plate leading to
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+ (dw/dy)? } dxdy = K*? '”.dx dy (10)

with limits of integrations as in (8). Since v and v vanish
on the boundary of the plate clamped along the
immovable edges, (10) ultimately leads to

J‘ 7-13358 Azeﬂ(_r]
(1= v)D dy h?

=2'66K2/D. (11}

Eliminating K? with the help of {9) and (11) one gets the
well-known cubic equation in the form

F)+C, FN+C, F (0 =0, (12)
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wherce
C, = D(2322-2629N¥%)/a*ph, (13)
C, = 18757 D(A/hY/a*ph, (14)

dxdy. (15)

The solution of (12) with the initial conditions
F(O) =1, dF(0)/dt = 0 has been given by Nash and
Modeer? in terms of Jacobian elliptic functions of
cosine type and obtained the ratio of the time-periods
for nonlinear and linear vibrations of ¢lastic plates. In
the present case such ratio 1s given by

20
T*/T =

—( +C,/Cy) 17 (16)

in which T and T* denote the time-periods for linear
and nonlinear vibrations.

Numerical results and discussion: Variations of non-
dimensional time-periods T*/7T for different values of
non-dimensional amphtudes A/h and temperature
parameter N7 have been computed and presented
graphically. It is seen that the effect of increasing N §is
to diminish the relative time-periods. As expected, the
nonlinear behaviour of plates due to elevated tem-
perature, obtained here, is similar in nature to that of
the plates subjected to in-plane compressive forces
investigated by Biswas>.
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Figure 1. Variations of non-dimensional time-

periods T*/T for different values of non-dimensional
amplitudes A/h and thermal loading parameter N7.
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ONE of the aims of light scattering studies near a
critical point is to verify the universality hypothesis.
Near the critical point, the susceptibility correspond-
ing to the order-parameter fluctuations divergesas ¢’
where t = (T - T,}/T,, is the reduced temperature, 7,
being the critical temperature and y a critical exponent.
This exponent is obtained experimentally from the
light scattering intensity measurements.

The true values of critical exponents are obtained
by approaching very close to the critical point where
q¢ > 1, g being the momentum transter vector and ¢
the correlation length. Away from 7, tn the hydro-
dynamic regime, where g¢ < 1, corrections-to-scaling
terms may be present. Singular thermodynamic func-
ttons such as the order parameters, susceptibility efc are
expected to be of the form

S—fe=AltPA+Bjt|®+ .. .),

where the first term represents the ‘pure’ scaling term
and the second and higher order terms, corrections to
scaling. For instance, in binary liquid mixtures, A
corresponds to B, the order parameter exponent
obtained from coexistence-curve measurements.



