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ABSTRACT

An account of author’s recent work on perfect powers 1n values of certain polynomals at integer

points 1s given.

INTRODUCTION

WE shall consider four equations. Though
they look different, there 1s much in common
the way 1n which the basic results are applied for
investigating them. Among the basic results,
there is a theorem of Baker' on the approxima-
tions of certain algebraic numbers by rationals
and an estimate of Baker? on linear forms in
logarithms. This is, mainly, an account of
author’s recent work and no attempt has been
made to give a systematic survey of the related
results considered in this article. For this, we refer
to chapters 10 and 12 of Shorey and Tijdeman?.
Let us write

1+3+3%4+334+3* =121 =112
147+7*+7° = 400 = 207,
1+ 18+ 18% =343 = 7°.

These numbers satisfy the following two

properties.
(@) The number 121 has all the digits equal to
one with respect to the base 3, the number 400 has

all the digits equal to one with respect to the base

7 and the number 343 has all the digits equal to

one with respect to the base 18.

(b) The numbers 121, 400 and 343 are all
perfect powers (=4,8,9, 16, . . . ).

This leads us to consider the question of
determining perfect powers in the set of integers
with all the digits equal to one with respect to a
given base. For an integer a with 1 <a < 10,
Oblith* completely determined the set of perfect
powers with all the digits equal to a in their
decimal expansions. He showed that 4,8 and 9 are
the only integers with this property. The case

a = 1 remains uncovered in Oblath’s resulit. In
this direction, Shorey and Tijdeman® proved that
for a fixed integer x > 1, say x = 10, there are
only finitely many perfect powers with all the
digits equal to one in their expansions with
respect to the base x. For a sufhciently large
integer x, the author® showed that the number of
qth perfect powers (=2%3%...and ¢q> 1)
whose digits satisty the above property 1s less
than q.

An integer with all the digits equal to one with
respect to the base x is of the form

l4x+.. . +x"" ' =x"-1/(x—-1).

Thus the above results can be interpreted in terms
of the integer solutions of the following equation

x"~1. .
mintegers x> 1, y>1,g>1,n>2

(1)

Ljunggren’ proved that equation (1) with ¢ = 2
has no solution other than the ones mentioned in
the beginning of this section. One would like to
show that (1) has only finitely many solutions in
all the four variables x, y, g and n. For proving
this conjecture, it suffices to show that (1) has
only finitely many solutions if n 1s restricted to
prime powers. In other words, it suffices to show
that (1) has only finitely many solutions if n ts
restricted to w(n) = 1 where w{n) denotes the
number of distinct prime factors of n. Sece
Shorey®: ® where it was proved that (1) has only
finitely many solutions in all the four variables if
n 1s restricted to w(n) > q — 2. A positive integer
which has no divisor other than one and itself 1s
calied a prime number.

-
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Goormaghtigh observed that

25— 1 52 —-1
Il=- —= ,
2— 1 5—-1
and
21 -1 90° —1
9] = = .
81 2 — 1 90 — ]

Thus 31 has all the digits equal to one with
respect to the base 2 as well as the base 5.
Similarly 8191 has all the digits equal to one with
respect to the base 2 as well as the base 90. He
conjectured that these are the only ones that have
all the digits equal to one with respect to two
distinct bases. Shorey” showed that there are at
most 17 integers which have all the digits equal to
one with respect to two given distinct bases, say x
and y. In other words, there are at most 17 pairs
(m, n) of positive integers satisfying

x"—1 y'=1

x—1 y—1 (2)

Again one would like to show that this equa-
tion has only finitely many solutions in integers
x> l,y>1,m>2andn > 2. 1t follows from the
theorems of Thue'!®, Siegel'' and Davenport,
et al'* that (2) has only finitely many solutions if
any two of the four variables x, y, m and n are
fixed. This 1s also the case if xy is composed of
primes from a given set or |x — y| 1s bounded.
These assertions are due to Balasubramanian and
Shorey!’ and Shorey'*.

Let A >0, B> 0 and k # 0 be integers. We
consider Pillar’s equation

Ax™ — By" = k. (3)

Pillai'® conjectured that (3) has only finitely
many solutions in integers x, y, m and n (all > 1)
with mn > 6. In view of the existence of infinitely
many integer solutions of Pell's equations, the
restriction mn > 6 is necessary In the above
conjecture. By the results of Baker'® and Schinzel
and Tijdeman'’, Pillai’s conjecture is confirmed
if any one of the four variables x, y, m and n is
fixed. For given integers A > 0, B > 0, x > 4 and
y = 4, Shorey® showed that there are at most 9
pairs (m, n) of positive integers satisfying (3) with

= 1.IfA=B=k=1, LeVeque'® proved the

above result of the author with 9 replaced by 1.
Equation 3)with A =B =k =1

xm_yﬂz 1, (4)

1s the equation of Catalan. In fact Catalan'®

conjectured that (4) has only one solution given
by

In other words, Catalan conjectured that 9 and &
are the only perfect powers that differ by one.
Tijdeman?® proved, in principle, the conjecture
of Catalan. This means that if x, y, m and n
(all > 1) are integers satisfying (4), then the
maximum of x, y, m and n 1s bounded by a
computable absolute constant, However this
constant turns out to be so large that finitely
many remaining cases can not be checked on a
computer to confirm the conjecture of Catalan.

By consecutive integers, we shall always mean
consecutive positive integers. It 1s easy to see that
the product of two cons¢cutive Integers 1s never a
perfect power. Erdos’! and Rigge’? indepen-
dently proved that the product of two or more
consecutive integers 18 never a square. Further
Erdos and Selfridge??, developing on the method
of Erdos?*, confirmed a very old conjecture by
proving that the product of two or more con-
secutive integers is never a perfect power. We
consider a more general question, namely perfect
powers in products of integers from a block of
consecutive integers.

For an integer v > [, we denote by P(v) the
greatest prime factor of v and we write P(1) = 1.
Let m >0 and k = 2 be integers. Let d,, . .. .4,
with t = 2 be distinct integers lying between |
and k. For positive integers b, l and y with [ 2 2
and P(b) < k, we consider the equation

m+d,)...(m+d)=>by. (5)

If the greatest prime factor of the left hand side of
(5) is at most k, then (5) 1s satisfied with y = 1 and
b=(m+d,) ... {m+d). Let pbeaprime greater
than k dividing m + d; for some i between ] and t.
Since a prime greater than k can divide at most
one integer among k consecutive integers, we see
from (5) that m +d; is, in fact, divisible by p'
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Therefore
k+1Y<p <m+d <m+k,

which 1mplies that
k' < m. (6)

From now onward, we assume that (6) is satished.
For I = 3, we put

YO S,
EI\ TS )PS5+ 4) )

We observe that

VIQ‘?/S, I=3,4,

The present author®: 2> proved that equation (5)
with

| > 3,t 2 vk, (7)

implies that k is bounded by an absolute con-
stant. Thus, if k exceeds a sufficiently large
absolute constant, any product of at least (7/8)k
distinct integers among k consecutive integers
m+1,..., m+k is never a cube or a higher
power, For large values of [, the restriction (7) can
be relaxed considerably®. For example, (5) im-
plies that t/k — 0 whenever both k and ! tend to
infinity. According to a conjecture of Erdos and
Turk 28, this assertion cannot be strengthened to

t/k -0 whenever k — 0.

Apart from the results of Baker mentioned in the
beginning of this article, the best possible es-
timates for linear forms in logarithms (with a,’s
close to one) are crucial in the proofs of these
results. The proofs also depend on the method of
Roth?” as elaborated in Halberstam and Roth*®
on difference between consecutive v-free integers.
For squares, much weaker results are available.
For ¢ >0 and k exceeding sufficiently large
number depending only on ¢ the present
author?® proved that any product of

loglog &

k—(1—¢)k log k

distinct integers among k consecutive integers

m+1,..., m+k s never a square. The proof
depends on a theorem of Baker'® on integer
solutions of a hyperelliptic equation and lemma 4
of Erdos?®?.
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