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THE INTERFERENCE OF POLARIZED LIGHT AS AN EARLY EXAMPLE OF BERRY’S PHASE
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ABSTRACT

The term “Berry’s phase™ is now commonly used to describe the change in the phase of a
guantum state vector under a sequence ot adiabatic changes which returns the system to ifs
original state. The purpose of this note is to pomnt out that a particular case ot this concept, as
applied to the interference of polarized light, was studied both theoretically and experimentally
in a series of papers published in the fifties by §. Pancharatnam. The phase term 1s proportional
to a solid angle on the Poincaré sphere which represents the states of polarization of light,

N a recent paper which has excited much interest,

Berry' drew attention to a property of the phase
tactors which accompany adiabatic changes in a
quantum mechanical system. The overall phase of
the wave function is. of course, subject to an
arbitrary convention for each state of the system.
However, the phase change occurring when the
system returns to its original state is independent of
this convention and a genuine physical property,
measurable in principle. Simon® has emphasized the
geometric aspects of Berry's phase while Chiao and
Wu have suggested’ an elegant realization of this
concept using changes in the state of polanization of
a beam of light travelling along a twisted space curve
defined by an optical fibre. This has been de-
monstrated by Tomita and Chiao®.

We undoubtedly owe the clarification of this
concept in its full generality to Berry's paper'.
Nevertheless, a few instances of the phenomenon
can be found in earlier work—notably that of
Longuet-Higgins® on the changes of the electronic
wavefunction during the motion of nuclei in a
molecule. Remarkably, Schiff’'s well known text-
book of quantum mechanics® also contains hints of
the idea. We wish to add one more item to this
list—the work by Pancharatnam’ on the interfer-
ence of polanzed light.

'The states of polarization of light, for the purpose
of this discussion (and many others!) are conve-
niently represented on a sphere®, following Poin-
car€. As shown in figure la and reviewed 1in
references 7 and 8, the two senses of circular
polarization lie at the poles of the sphere and the
states of linear polanzation orniented at angles lying
between 0° and 180° (with respect to some fixed
axis) are arranged along the cquator of the sphere.
For concreteness, consider an experiment tn which
there are two linear vibrations in dircctions inclined

at 45° to each other, represented by the points A and
B on the sphere. A natural definition’ of these two
vibrations being in phase would be the situation
when the intensity of the resultant 1s a maximum. In
the present case of two linear vibrations, this occurs
when they both pass through a maximum at the

Figures 1a and b. a. The Poincaré sphere repre-
sentation of the states of polarization of light. Cis a
circular state, represented at the pole, while A, B
and D represent hnear vibrations respectively
onented vertically, at 457, and horrzontatly. b. The
lower half of the figure shows two lincar states
inclined at 45°. The filled circles indicate a situation
when the two linear vibrations may be said to be i
phase. The upper part of the figure shows the result
of analyzing these two states with a circular analvez-
er. The phase difference s now 457
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same tume with the vectors making an acute angle
(higure Ih). Now let both these hnear vibrations pass
through a circular analyzer, represented by the pole
C of the sphere. One might naively expect that since
A and B were Cin phase’ to start with, their
components after transmission through C would
remam an phase. A httle thought or calculation
shows that n fact the two circular vibrations pro-
duced by analvsis of A and B through C differ in
phase by 45° (figure 1b). This example has been
chosen to illustrate the general result {(Section 8 of
Pancharatnam’s papery that an additional phase,
equal to half the area of the sphencal triangle ABC,
must be mtroduced in calculations of the interfer-
ence between A and B, as analyzed by €. This 1s
fully borne out by Pancharatnam’s experiments’ on
interference figures in absorbing biaxial crystals.

Although, A, B and C do not appear symmetrical-
ly in the above example, the following restatement
makes the situation clear. Consider any closed curve
on the Poincaré sphere. starting and ending at a
point P,. The state of polarization P, can be
analyzed along a sequence of states Py, P,, P; along
the curve, with the last step being the analysis of P,
along P, (figure 1). In the limit n — > with the
separations P, P,, P, P,, ... etc, all tending to zero,
the final state P, differs from the initial by a phase
equal to half the sohd angle subtended by the curve
PoP,... P, at the centre of the sphere. The ana-
logue of this for a spin half particle would be an
arrangement often used in polarized neutron diffrac-
tion—a gutde field which the spin direction follows
adiabatically. The phase changes and interference
effects resuiting from such rotations indeed consti-
tute one of the examples in the original paper' and
the excess phase s directly the solid angle swept out
by the magnetic field vector.

The alert reader will have noticed that the entire
discusston has involved the phases of classical
electromagnetic waves, while Berry’s argument
concerns the phases of quantum mechanical state
vectors. Berry' has in fact commented that the

phase factors which he discusses are applicable to
classical wave phenomena as well. Further, Mukon-
da and Sudarshan'’ have set up a clear correspond-
ence between state vectors in the one photon
subspace of quantum electrodynamics and a set of
solutions of the classical Maxwell equations. This
rastifies our identification of Pancharatnam’s excess
phase’ on the Poincaré sphere as an early example
ot what is now widely known and discussed as Berry’s
phase.
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