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ABSTRACT

Huyghen's method of wavefront construction s equivalent to integrating the ray
equations. This article reviews a recent development which shows that the extension
of the method to a nonlinear wavefront consists of integrating the ray equations along
with a compatibility condition. The extension 1s also possible for the construgtion of

weak shockfront.

INTRODUCTION

HRISTIAN Huyghen (1629-1695), a Dutch

mathematician and physicist, proposed
that all points of a wavefront of light may be
regarded as new sources of wavelets that
expand 1n every direction at a rate depending
on their velocities. Huyghen's proposal is a
powerful method for studying various optical
phenomena. The envelope of the wavefroats at
a given time emitted by these sources consti-
tutes the new wavefront at that time. This
envelope or a new wavefront can also be
obtained equivalently by drawing normals to
the original wavefront, the length of the
normals being equal to the distance travelled
by the light and then considering the locus of
the end points of the normals. The theory of
complete integrals of the characteristic partial
differential equdtion and the corresponding
construction of envelopes show that the
Huyghen's method of wavefront construction
is true not only for light waves but also for waves
governed by an arbitrary hyperbolic system
of [inear equations'. Huyghen's method of
wavefront construction tells only about the
location of the wavefront and not about the
intensity of the wave on the wavefront, The
[atter forms an 1mportant problem whose
approximate solution, in geometrical optics
fimit, will be discussed in the next section. For
a hyperbolic system of quasilinear equations,
we shall discuss a recent development in which

the wavefront and the intensity on the wave-
front ate governed, in geometrical optics hmit
or short wave approximation, by quite a simple
system of equations along, what we «call,
nonlinear rays>->. The equations for the con-
sttuction of the successive positions of the
nonlinear wavefront are now coupled with the
amplitude equation and the method can be
regarded as an extenston of the Huyghen's
method. We shall also show that such an
extension is possible for the construction of a
shockfront (see ref. 4).

GEOMETRICAL OPTICS THEORY FOR THE
(LINEAR)} WAVE EQUATION

We shall first show that Huyghen's method
of wavefront counstruction 15 embedded in a
mathematical theory of finding approximate
solution based on the fact that the discon-
tinuities in a solution at the wavefront are
represented by high frequency terms, which
also form the dominant part of the solution. In
this theory, known as ‘geometrical optics’, we
assume that the solution of the wave equation

a, = constant (1)

singular at a moving wavefront or a character-
istic surface ¢(x,, 1) =0 and vahd in the



Current Science, January 20, 1987, Vol. 56, No. 2

neighbourhood of the wavefront, is repre-
sented in the form

u(xu:! I) = vU(xﬂ"! t) H{}((P) +vl(x&! r) Hl(‘P)
+V3(Iu.., f) Hg((,D)'i“ . (2)

where Hy(¢) is the Heaviside function:
H”(KP) = | for P = lq. = O for {2 < Oand H”(QD)
have weaker singularities for n = 1;

1,
Hr:(¢)= EQD-EO

0, <0.

(3)

The EXPTESSiOH (2) lmplles that v“|¢,=“ 1s the
jump in the function u across ¢ = 0and v |, =¢
1s the jump in the normal derivative of u across
o = 0,

It is not necessary to give explicit forms of
the generalized functions whose coefficients
are vy, Vi,... but to write u as

LAk

H(Xﬂ,, f) — Z Vﬂ(‘xﬂ ’ I) g(ﬂ) ((P) (4)

0n=1_0

where the generalized functions g (¢), with
singularities at ¢ = 0, satisfy

4 ) = o=

do 8 @) =8" "(¢) ()
Since the functions g are regular at points
where ¢ # 0, the coefficients vy, v¢,... are

uniquely determined only on the surface of
discontinuity ¢ = 0 [this would not have been
the case if we had taken v, to be independent
of r i.e. v,, = v,(x4)}.

Substituting (4) in (1), using (5) and then
equating the coefficients of functions g'=?,
gD o | we get a sequence of conditions

on the surface ¢ = 0, the first two being

¢7 = a5 @x, @x, =0, (6)

2(49; Vor ~ @i Px Vo, )
+ (¢ — a; P, xﬂ)vU =0 (7)

where a repeated suffix indicates sum over the
range 1, 2 and 3.

Equation (6) is the characteristic partial
differential equation of the wave equation. 1ts

51

l— e

characteristic curves give the bicharacteristic
curves in (x,, ) space and give the rays in
(x,)-space. The ray starting from a point (x .,
t,) of the wavefront at time £, and having unit
normal (n,) at that point is a straight line given
by

a=1,2 3. (8)

Equation (8) shows that the points (x,) on the
wavefront at time ¢ are obtained by moving in
the normal direction (n, ) by a distance equal to
ao(t —t,). This is equivalent to the Huyghen’s
construction.

We can easily show® that the term

1
(_5' @ Vor — @x, Vu.r“)/lgfﬁd (P,

g

Ao — Xa) — ”aﬂu(f"' tu)~.

in (7) represents the spatial rate of change
dvy/dl of the intensity v, along a ray. Since

n, = ¢, [lgrade| and ao = — ¢,/|grad ¢|, we
can show that

on,
O — a% Cx x, = ﬂﬁlgl’ﬁd ‘Pl“_—'
X

L

Let us define a function A along a ray as the
limit (as the maximum diameter of the ray tube
tends to zero) of the ratio of the cross-sectional
area at any location of the ray tube to the

area at a standard reference section. It follows
from differential geometry that the mean
curvature

11 dA

1 In,
- 24 dl”

2 dx,

Equaion (7) now takes the form

1 dA
2A dI”°
which leads to the important result regarding

the law of variation of the amplitude of the
wave

1 d"’{}_

e &
V{)d( ()

A0

voll) = (__.__ )”3;-(0).

0 (10)

This equation Jeads to unhounded value of v,
at the focus or caustic where A () — 0. Hencee,
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the expansion procedure {2) or (4) ceases to be
valid near these singularities. The correct
behaviour near such singularities was  first
investigated by Airy and has been given using
boundary layer theory by Buchal and Keller®.

EXTENSION OF HUYGHEN'S METHOD TO
CONSTRUCTION OF A NONLINEAR
WAVEFRONT

Huyghen's method of construction of a [i-
near wavefront follows from the characteristic
ordinary differential equations (or the ray
equations) of the characteristic partial differen-
tial equation of the governing linear equations.
The characteristic partial differential equation
of a linear system s independent of the
amplitude of the wave and hence the method
of wavefront construction does not involve the
amphtude. This is not so for the gas-dynamics
waves, the charactenstic partial ditferential
equation for which, for a polytropic gas with-
out dissipation and heat conduction, is

O F g Fale, e )7 =0, (11

where (u,) is the velocity of the fluid and a is
the local velocity of sound, given in terms of
gas pressure and mass density p as
a = (yp/p)"*. Equation (11) corresponds to
the forward facing waves.

The characternistic ordinary differential equa-
tions of (11) can be written in the form

dx,/dr = u, + n,a (12)
and
aHB Jd
— - -~ —), (13
dn,/dt = (nany, —0,y) (nﬁ %,  ox, ) (13)

where unit normal n, to wave front is given by
n, = ¢, /lgrado|. Without loss of generality
(but for simplicity of the resuits) we shall
consider hercafter the case of two space
dimensions. Then the range of Greek sub-
scripts e, B or y will be 1 and 2 instead of 1, 2
and 3.

The nonlinear ray equations (12) and (13)
contain u, and a, which depend on the

amplitude of the wave. In order to find
successive positions of a nonlinear wavefront,
we must find rules of the variation of «, and a
along a nonlinear ray. This is not trivial since
the compatibility condition on the characteris-
tic surface of the gas-dynamic equations leads

only to one relation along the nonlinear rays
(12} and (13):

du, du,\ d
[Hi(ﬂ]]aF“+fkg"a?-)4‘?£}

2 aﬂz Ju
+ pa ("1‘5“”23‘1‘)=0 (14)
where
J J Ve,
ax - Mg T e (15)

represents the spatial rate of change along the
nonlinear wavetront at any time. However,
under the assumption of short wave or high
frequency wave (equivalent to the geometrical
optics approximation of the hinear theory) we
can use the compatibility condition along the
other two families of characteristic surfaces to
show that each of u;, u,, p and p can be
expressed in terms of a single variable, say w.
This result has recently been obtained by
Srinivasan (1987)'°, in the general case of an
arbitrary amplitude. We shall, instead assume
the amplitude to be small and discuss the
nonlinear wave front in the case of weakly
nonlinear waves’.

The short wave assumption implies that the
dimension of the flow region in a direction
perpendicular to the wave front ts small com-
pared to the lateral extension of the wavefront
and its radius of curvature, Consider a two-
dimensional motion of an ideal gas under short
wave assumption, where the nonlinear solution
is the result of waves moving into @ medium at
rest i.e. with (u,, u>, p, p) = (0, 0, pa. po).
Then the above mentioned relation between
iy, Uy, p, p and w, for small w, 1s

Uy = MW, Uy = HaW, D— Do = ppagW,
p— po = (py/ag) w. (16)
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[et 8 be the angle which the normal to the
wavefront makes with the x;-axis i.e.
ny = coséd, n; = sinfd. Now, equations (12),
(13) and (14) lead to the following set of ray
equations and the compatibility condition

dx,/dr = (ﬂ(} + Z—;—l w) Cos 0, (17)
dx,/dt = (ag x> w) sin 6, (18)
oy +1 ow
1 o6
dw/dr = — 5 QW = . (20)

These equations form a coupled system of ray
equations for the determination of the succes-
sive positions of a weakly nonlinear wave
front, the inclination to the x;-axis and the
wavefront intensity w. In the linear theory, the
right hand side (19) i1s replaced by by zero
showing that the rays are straight lines, w drops
out from the equations (17) and (18) leading to
(8) and the bicharacteristic equations (17)—(19)
decouple from the compatibility condition
(20). Equations (17)-(20) can be treated as a
mathematical form of an extension of
Huyghen’s construction of a weakly nonlinear
wave front. Apart from stretching of ray rays,
the main new thing which appears in this
extenston is the turning of the wave front due
to nonuniform distribution of the intensity on
the wave front. Equation (20) is actually the
same as that which leads to the amplitude-ray
tube area relation in the linear theory but here
the rays themselves are shifted due to (19).

Equations (17)-(20) can be used to denve
many properties of the solution which are
qualitatively very different from those
obtained by the linear theory. One such result
is that even in the first approximation of the
short wave assumption {nonlincar geometrical
optics), no infinite amplitude appears in the
solution. For a discussion of these and many
more new results, reference may be made to
Ravindran and Prasad® and Ramanathan®.

EXTENSION OF HUYGHEN'S METHOD TO
CONSTRUCTION OF A SHOCK FRONT

For this extension, firstly we need a first
order partial differential equation, which we
may call a shock manifold partial differential
equation (SME) whose characteristic ordinary
differential equations would give shock rays.
Next we need a compatibility condition along a
shock ray. A shock is a surface of discontinuity
and hence the high frequency assumption or
the short wave assumption 1s automatically
satisfied. It was not until Maslov’s work® in
1978 (English translation in 1980) and our
paper’ that the concept of SME was clear.
Successive positions of a forward facing shock
can indeed be determined by a SME

S¢+ UgppSy + A(Sf,1I + sig +3i)”2= 0,

(21)

where (u,() 15 the fluid velocity on one side of
the shock, say ahead of the shock on the right
and A is the velocity of the shock relative to the
gas ahead:

A2 _ _Ef_f“pr

. 22
Pt Pr— Pr ( )

'The subscripts / and r refer to states on the left
and on the right sides of the shock. There 1s a
difficulty in treating (21) as a partial differen-
tial equation, the functions u,q, ps, pr, p1 and
p, are defined only on one side of the shock
either in the left subdomain or right subdo-
main. This difficulty is overcome by continuing
these functions on the otherside as infinitely
differentiable functions, though such a con-
tinuation would not be unique. The sccond
difficulty in accepting (11) as a SME 1s that
there are more than one such equations which
can qualify for SME. We showed’, taking two
different SMEs, that the shock rays given by
them indeced coincide and hence both SMEs
give the same successive positions of the shock.

The compatibility condition along a shock
ray was first given by Maslov® for an isentropic
flow of an ideal gas. For a shock of arbitrary
strength, the assumption of constant entropy is
not correct. Srinivasan and Prasad® derived the
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compatitihity  condition for a non-isentropic
flow for a shock of arbitrary strength. In this
article we use the compatibility condition for a
weah shock propagating in two space dimen-
StOMs INtO & gas at rest in uniform state [see
Ravindran and Prasad (19385)]. Let O represent
the inclinatuon of the normal to the shock front
to the x;-anis and et w be an appropnate
measure of the amplitude of the shock. Then a
shock ray and the compatibility condition
along 1t are given by

ax, Y+ 1
== (al,—!- 1 u)cos@ (23)
dx» v+ 1 _
df = (ﬂ’” + -'——'4 W) San (24)
do _ _y*low
de 4 om° (25)
and
w1l w8 _ytl, ow
d =~ 27" q N (26)
where
- —sin@—,a—- +cos®-—£- and
on ax, JdX>
J Jd . 0
WFCOS@EEI— +Slﬂ@m (27)

represent tangential and normal dernvatives
with respect to the shock surface at any fixed
time. Comparing (17)~(19) with (23)-(25) we
verify a general result” that the shock ray
velocity components and the rate of rotation of
a shock front 1s mean of those of the nonhnear
wave fronts on the two sides of the shock but
instantaneously coincident with the shock.
The right hand side of (17) and (20) contains
only interior derivative d/é¢A in the nonhlinear
wavefront and hence given the initial position
of the wavefront and the distribution of w on it,
we can formulate an inttial-value problem for
{(17)-(20) to solve {or the position of a non-
linear wavefront at a later time and the
distribution of the amplitude on it. Such a

e oy S e et — ——

procedure 15 simply not possible for a shock-
front due to the presence of the term dw/gN
which can be evaluated only if the solution is
known at any time not only on the shock front
but up to a short distance behind the shock
front. Correctly speaking, the term dw/aN in
(26) represents the influence of the nonlinear
waves which catch up with the shock from
behind. This term is zero only when the flow
behind the shock is a uniform state as in the
case of one-dimensional piston problem mov-
ing with uniform speed. Fortunately, in the
case of weak shocks, the term dw/éN can be
calculated with the help of the equations
(17)-(20) [see Ramanathan®, Ravindran and
Prasad’ and Prasad and Ravindran®]. Thus
equations (23)-(26) really form a very good
method for solving a large class of practical
problems involving propagation of weak
shocks.
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