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ABSTRACT

Without appealing to the exact homogeneity and isotropy of the universe, bounds on the
cosmological constant are derived in the framework of a general spacetime. The special case of

Friedmann cosmologies ts also discussed.

INTRODUCTION

HE consequences of a non-zero cosmological
Tconstant in the context of the dynamics of the
universe have been extensively discussed®*%. In fact, a
universal constant A can be inserted in Einstein’s
equations without destroying the general covariance
of the theory? to write,

R~ 1/2Rg, + Ag,;=87GT, (1)

In recent years, there has been a tendency? to regard
the cosmological constant as one of the most funda-
mental physical entities. It 1s generally accepted that
the cosmological constant should be considered as
part of the stress-energy tensor representing the non-
zero vacuum expectation value of T;; generated by
quantum fluctuations. Thus, A is a number (with
units cm™?%) which can, in principle, be calculated
from local quantized fields*?

On the other hand, the observational methods to
determine A invoke the departures from the exact
Hubble flow for the distant galaxies. The bounds
thereby determined for A are very tight
(IAl<1073% ecm™%)%. It should be noted, however,
that the above method is beset with several stringent
assumptions regarding the universe as a whole
(whereas we can only observe part of it), namely, its
exact homogeneity and isotropy and an exact
measurement of the IHubble constant which is very
uncertain at the moment. It would, therefore, be
highly desirable to have an alternative approach to
this problem where the above assumptions can be
relaxed. It is the purpose of this paper to present such
an alternative method to place limits on A where we
neither assume the global homogencity and Isotropy
of the universe, nor the values of the Hubble
constant H .

TIHHE GENERAL FORMALISM

In our cosmological consideration, we merely
assume for the global geometry that the spacelime

admits a foliation® by spacelike hypersurfaces. This 1s
a property shared by all the physically reasonable
cosmological models such as Friedmann or steady-
state. Two further conditions that we impose are that
Einstein’s equations {1} with a cosmological constant
hold, and that there are no modes carrying negative
energy .

The world-lines of galaxies or other material
particles are represented by the non-spacelike tra-
jectories in our model. We examine® the evolution
of these nonspacelike paths from the present epoch §,
into the past. The gravitational focussing cffects’
generated by the stress-energy density are chara-
cterized by the expansion parameter 0 of the
congruence of timelike geodesics which are ortho-
gonal to §. and which obey the Raychaudhun
equation,

d’x/dt? + F{t)x =19, (2)
where x is defined by the equation 0= 1/x (dx/dt} and

F()=4(R,, V'V’ +20?). (3)

The quantity o represents the shear of the congru-
ence.

There is, however, a constraint on the occurrence
of the foca) or conjugate points which s, given any
two causally connected events, there exists a maximal
geodcsic joining the two which can contain no con-
jugate points. The zeros of (2) represent the conjugate
points which result from the gravitational focussing
of non-spacelike trajectories. When F{t)>A* >0, the
maximal posstble extenston mtu the pe M of any non-
spacchke curve from S, is "given by 5 TN We
compute F{f) usmg (1) to obtam,

R VVI>4nGp - Ac?, (4)

This gives for the mavimum possible age ¢, 1n the
Pt!“‘il:

t n ( 3 )“‘"z .
e PR 2



198

Current Science, March 5, 1987, Vol. 56, No. 5

It *hould be noted that departures {rom spherical
syrunctry or perturbations from evact homogencity
and tvotropy are permiited in the analysis.

BOUNDS ON THE COSMOLOGICAL
CONSTANT

We pote that observartons on the departure from
the Hubble law for distant galaxies mentioned earlier
only imply that |A| is very small, and that, A may
have a positive or negative sign. We consider here
each case separately.

For obtaming Iimits when A is negative, we can
ignore the contribution {rom p-term in {35) {including
the same would, in any case, tighten the bounds given
by us). Then (5) can be written as

7 3 12,
tnax < _'2_'( IAI('E ) (6)

Now, a variety of considerations’'? independent of
cosmological models, such as the ages of stars and
globular cluster ages place the lower limit to the age
of universe in the range (8-24)x 10 years. Clearly,
we must have ¢y, <Im,y, and (6) then gives,

IAl=(3r?/4tk, c?) <(3m?/4t2). (7)

Thus, for example, with t, =20 x 10° years, we have,
IAlmax =2.1 X 107°% cm ™4, (8)

We note that for the entire range of ages (10-24 x 10
years), |Alnax turns out to be of the order of
107 °% ¢m ~ 2 Hence, the limits computed here within
a general framework turn out to be actually better
than those {10735 cm™2) obtained using the obser-
vational method. In fact, this 1s not unexpected in
view of the large uncertainties prevailing today in the
measurements of the Hubble constant H,. When A is
posttive, (5) tmplies that

A<(4rnGp/c?) (9)

Also, we have,

4nGp—Ac*=(3n2/412 .. )<
(3n%/4t8,). (10)

A combination of (9 and (10) limits the range of A to

dnGp~3ni/Atl,) < Ac* <4nGp. (11)

With the mput of data on the presently measured
energy densities, the RHS of (11) provides tight upper
limtts on A. For example, for p=5%x10"%%gcm 3,
we get A<4.7x107°°cm™2 For lower limits the
sttuation here 1s not equally clear as one requires the
data on observed ages as well as that on densities,
Thus, for example, for p=10"3gem~? and
tob =20 X 10° years, the lower limits are negative:
which 1s not very useful.

Finally, we examine the bounds on the cosmo-
logical constant in the framework of the Friedmann
model. Since this 1s a special case of the general
situation discussed above a substitution of the eneray
density p,=3q,H2/4nG in (5) gives

T 3 1/2
<t ., = — ) . (12)
2 \ 3gq,HI—Ac?

Here g, 1s the usually defined present value of the
deceleration parameter. Again, using the Friedmann
relation t,=H_ ! f(¢,) in (12), we obtain,

Ac?2134,[19.)1%/t5] — (3n*/41;). (13)

The function ¢,[f{g,)]* has an interesting property:
As g, tends to infinity, ¢Zf{g,) has a maximum
value n/2,/2. Using this we get,

Actz —3n*/8t. (14)

Another constraint that follows from (12) is Ac*<
3g,H: The above limiting procedure them again
gives,

A<3n?/(8c?t2). (15)

Thus, independently of the sign of the cosmological
constant, we have,

[Alpe=372/(8¢222). (16)

A typical value for the age of the universe, £,=2x 10"°
years then gives |A],=104x107%%cm™% The
observations on ages thus again provide relativily
stringent limits on the value of the cosmological
constant within the Friedmann cosmologies.

PARTICLE MASS UPPERLIMITS WHEN A#0

The cosmological considerations have been very
successful in placing stringent limits on the masses
of elementary particles, notably those of neutrinos,
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leptons etc!?, It was, however, pointed out by Barrow!
that most of these results rest on the unverified
cosmological assumption of A=0. It 15 extremely
likely that a non-zero value of A will emerge as a
result of phase transitions in the early universe.
Barrow has stressed that in such a situation, the
particle mass upperlimits will stand revised consi-
derably as argued below. The assumptions of com-
plete homogeneity and 1sotropy give the Friedmann
equation,

(R?/R¥)=(87Gp/3)—(k/RH)+A. (17)

With the usual definitions of the Hubble constant H
deceleration parameter ¢, and dimensionless density
parameter ,=8nGp,/H, we can write,

0 =QA/3HY)+2g,. (18)

Hence, if A > 0, the matter density can be consi-
derably higher without adversely affecting the value
of g, and particle masses can be correspondingly

larger.
Now, the observational data on the lower limits for

ages of stars, globular clusters, the red shift magni-
tude diagram and the quasar data imply that when
A #0, the parameters g, and {), obey the following
limits:

—~44<g,<56,005<Q,6<94. (19)
In such a situation, we have an upperlimit on p,:
0,<1'7x10"28h2gem™2. (20)

This weakens the particle mass limits considerably.
Taking the case of light neutrinos, we have

m. £ 280 hZeV, (21)
instead of
m, <60 hteV, for the A = 0 case. (22)

The bounds for heavy neutrinos, heavy leptons ¢tc
wil be similarly revised.

We can now usé the plobal consideration given
above to further remove the unverificd cosmological
idcalization of exact homogencity and isotropy
towards obtaining the revised particle mass limits
when A#0. Apain using (3) and fi,), <l We LA
write:

—— PN —

{ 32
£
g 412,

]
+ Ac? } perest (23)
n

The input of observed ages would again provide
upper limits on the total energy density for a cosmao-
logical particle continuum. For example, taking
t,, =2 X% 10'Y years, we get

m, < 73 ¢V, (24)

for A=2x 1073 cm~™2. Thus, it turns out that a non-
zero cosmological constant significantly changes the
elementary particle mass constramts in cosmology.
Clearly, the case for a non-zero value of the cosmo-
logical constant A is still open. We have attempted
to derive bounds on the value of A (both positive
and negative) using the data available on the lower
limits of ages of oldest objects in the universe. We
have also examined the effect of .ion-zero A on the
upper limits of particle masses.
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