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MATHEMATICAL THEORY OF SCATTERING IN QUANTUM MECHANICS—A REVIEW
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ABSTRACT

A brief review of the mathematical theory of quantum mechanical scattering is
given from the time-dependent point of view, Some of the proofs for completeness in

the 2-body case are discussed.

rARLY thirty years have passed since the
foundation of the mathematical theory of
scattering in quantum mechanics was laid by
Jauch* and Cook?. Significant advances have
been achieved in these thirty years mainly in the
domain of time-independent theory due to the
pioneering works of Kato, Kuroda, Agmon and
others. These methods have been extensively
discussed in the books [AJS®], [RS* Vols. 111
and V] and [Sigal®>]. All these theories essen-
tially study the resolvent operator (H-Z)™ ! of
the relevant Hamiltonian H as Z -/ 1 io where
/ belongs to the spectrum of H, ahd involves a
careful analysis of the Green’s function near the
spectrum of H, These methods should more
appropriately be called the spectral analysis of
the continuous part of H. Recently Enss®
initiated a direct time-dependent method which
rclies on the time description of the physical
nhenomenon of scattering. Now one has very
satisfactory theorics of 2-, 3- and 4- body sca-
ttering, short as well as long-range, mainly due
to the efforts of Enss®, Mourre’, Perry® and
also our group at the Indian Statiﬂ;tical
Institute® ~*'. Very recently Sigal and Soffer!?
have given a proof for N-body casc. We shall
briefly outline this second line of developments.
We start with the Dirac-von Neumann de-
scription of quantum mechanics viz that we
have a Hilbert space o as a receptacle of the
quantum mechanical system with the states of
the system being given by the vectors (unit rays
to be more precise) in # and the observibles
by some suitable subsct of the self adjoint
operators in #. The dynamical evolution of
the system is then given by a one-purameter

group of unitary operators in ¥, whose self-
adjoint infinitesimal generator / is called the
Hamiltonian of the system. A physical system is
characterized by the choice of the kinematical
variables, say position Q and momentum P
observables, and then a certain Hamiltonian H
ts constructed as a function of these obser-
vables.

More specifically, for a system of N in
distinguishable particles without spin and
moving non-relativistically, the appropriate
Hilbert space is # =L2(R*"), consisting of
(equivalent classes of) complex square-
integrable functions of N 3-vector vartables, and
the positions Q, and momenta P (i={,.... N)
observables are given as

(Q_;f) (Xl‘?‘ . x?‘n‘ jf(hh R ')1
(Pof) Xy ., Xp)= =iV (Xp. -+, Xph

with natural domains {we have put 4=1 for
convenience). Note that Q;'s are all sell-adjoint
while P/s are not a ‘natural’ scll-adjomnt ex-
tension can be obtained by using the L7 theory
of Fourier transform (see reference 3) which are
also denoted by P,. For a non-relativistic
situation, a typical (Galillecan covanant)
Hamiltonian H 1s wiven as

H=H, 4 V=l T Vb5 O
where [If -—-—Zi m )"‘l‘*‘ .md s are pair

potentials, A transformation to the centre of
mass coordinate system reduces the above to

H=H gt Hog=Hy+ (2 0,) P+
S
LR
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in the decomposition

X#=L4(R)S LR FD),

where P, are the relative momenta in the
Jacobi coordinate system. The potentials are
called short-range if [V, (x)]~ix|7'7% >0 as
Ix]— o0 for every j, k, otherwise 1t is long-range.

The first problem is to prove that H or His
self-adjoint and this is achieved for a large class
of potentials by using the calebrated Rellich-
Kato theorem. This is done by showing directly
that H, is self-adjoint and then proving that
Y. Vi is ‘very small’ relative to H,,. Details can
be found in references 3 and 4.

Once we have a self-adjoint H, we write the
total Schrodinger evolution group V,=exp
(—iHt) and ask the first question of scattering
theory: what is the asymptotic behaviour of V,
in the distant past and remote future? Since
& is co-dimensional, the coneept of proximity
between states is not fixed and there are many
possibilities. However a careful study shows’
that in most cases the natural metric of »# 1s
enough. Intuitively it is clear that if the
interaction potentials decay to O at oo
‘sufficiently fast’, then ¥V, should asymptotically
look like any of the possibilities described
betow.

Let D be a partition of {1,2,..., N} into
n(>2) clusters (1), (2),. .., (n). The associated
cluster Hamiltonian H? is obtained from H by
dropping in V all interactions between patticles
in different clusters 1i.e.

H=H,+ Y Y Vi 0
k=1 i<jetk)

Then it follows that H? is also self-adjoint on
D(H,) and we write UP=exp(—it H”) for the
evolution of the clustering D. Intuitively 1t
appears that for large negative and positive
times the total evolution ¥, looks like U} for
some D. In particular, one possibility is that all
N particles are frec ie. a partition D with n=N
and cluster Hamiltonian H,. Thus the first
problem of scattering theory is to establish this
for some class of pair potentials. The next

theorem gives a typical result in this direction,
the proof of which can be found in reference 3.

Theorem I: Assume that each pair potential V
belongs to L%(R3). Then (i) the wave operators
Q2 =s—IimV*UP as t->+oo exist, (ii)
HQR =08 H®, the intertwining property is
satisfied, (iii) setting F5, =Q2 Q°*, the ortho-
gonal projection onto the ranges of the
isometries QY, one has furthermore
Fi F‘i = 5:DFI:1 ‘

The conclusion (i) implies that for every state
of the form QFf f under the total evolution V,
1ooks like’ UPf at distant past (— ve sign) and at
remote future (+4ve sign) respectively. The.
second result means that H restricted to the
reducing subspaces F3 are unitarily equivalent to
the absolutely continuous operator H”. The
implication of (iii) is that the subspace of the vec-
tors of the form Q2 f is orthogonal to the one of
the form (1 {g when C and D are distinct cluster-
ings. Let us now add up (precisely, take direct
sums) of these orthogonal subspaces 1.e. write
Fy =Y F2. Since we believe that all possible

D

asymptotic states have been counted, this sum
should give zll the scattering states, and also we
do not expect any asymmetry between past and
future leading to our writing ¥, =F_=[—-P,,
where P, is the projection onto the N-body
bound states. This is the second (and much
more difficult than the first one} problem of
scattering theory and is often known as the
problem of N-body asymptotic completeness. It
is not possible here to even begin to describe
some of these methods in detail and we shall
only deal briefly with the simpler case when
N =2. But before that we say a few words about
this problem itself, confining ourselves to N =2
case for simplicity.

If we define the scattering operator
S=0*Q_, then for the definition of § we need
only that the range of Q_ is contained in that of
Q.. ie. F_<F.. However in such a case, S 1S
only isometric and § is unitary if and only if
F_=F_. Contrary to what one may think, the
existence of an anti-unitary time-reversal
symmetry (since H is a real operator!) has no
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bearing on the problem unless one has already
managed to show that F_ <F,. In practice.
one directly shows the equality without
bringing time-r¢versal into consideration. In
fact one can construct examples of real
Hamiltonmans with potentials of compact
support, but very singular near the origin and
also oscillatory with the period decreasing as
one approaches the origin such that the pro-
jections ¥, and F_ are not comparable though
the wave operators exist. In such a model, a
part of the incoming wave gets absorbed in the
scattering centre and the rest gets scattered
while a part of the outgoing wave 1s created
from the scattering centre and the rest appears
to have come from some incoming projectile. In
this model, S i1s not unitary, not even isometric.
The details of such bizarre yet intcresting
situation can be found in (references 3 and 13)

Now we briefly describe the proof of the
asymptotic completeness for the 2-body short-
range problem by the time-dependent method.
In this version the generator of the dilation
group plays an important role. In # =L*R>),
set

(Yo ) (x)=exp (—30/4) flexp (~ 0/2)x]
v fe #, UcR. (4}

so that Y, 1s a unitary strongly continuous
representation of the dilation group in R* with
its generator

A=1{(P.Q+0,P)on p(R3)

One then easily verifies the commutation rules:
[A.P1=iP, [A4, Q)= ~1Q[AH,]=iH,. [5)

Here H,=1P?, the relative free Hamiltonian in
the ¢cM system with relative mass y=1. The last
refation in (5) can bc rewritten as [A,InH,} =1
which is just like the relation [g,p}=im 1-D
quantum mechanics. However, caution is to be
exercised due to the fact that since both A4 and
In H, are rotationally invariant, they have an
underlying degeneracy space which is just the
L2 of the unit sphere in R*. The commutation
relations (5) also tell us that the self-adjoint
operator A with the whole R as its (absolutely)

— il - il

continuous spectrum ‘behaves much lhike @
which will be made precise in the next lemmas.

Lemma 2. (1400 *(H, + 1)~ (1 +{A]F 15 a
bounded operator in ¢ for all o« such that
0<a<2. Proof is by first observing that the
conclusion 15 true for a=0,2 by (5) and then
applying interpolation (see reference 4).

Lemma 3: Let P=  PllAl<«lt]) denote the
projections corresponding to the spectral sets
A § 0,{4] <«kit] respectively, and lct ¢ be a C*
function of compact support in R* — o} with
2k =1inf supp ¢. Also assume that the 2-body
potential V is such that V(H, + 1)~ ' (1 +|0))! *2
is compact for some >0 (eg. if (1+|Q)1™°
Vel (R} + [2(R%)}). Then.

) P4l <«lt])exp(—ill ,0)d{H )P || <
Cy(1+)t) Mlores 0

respectively and for every positive integet N,

(11) | Vexp(~iH , 0)o(H )P |
SCyi+ih ' fortr $ 0,

() [$(H)—~¢(H,)] and Q4 — }dH, )P,

are compact operators in J#,

(iv) s—lim P, exp(—iH )${(H =0 as
[— F

Sketch of proof (for £>0) 1) From (5) it follows
that exp (it ) Aexp(—ill ty=A+H,t and
therefore  &(H,) exp (—TH 1) P, exp {(il{ t}=
d(H )P(A>H,t) implies classically a reglon
where 4> 2nxt which is disjoint from {A|<«(].
The inverse power decay comes [from the
quantum overlap of two classically disjoint
regions and exact estimates can be obtained
using the method of stationary phase (sce
reference 10).

() (AL Texp(—=ilf Jo(H, P4 f <
HOE+H1AD T PUAL> wle ]+ BP AT <w|t])
exp{—il,04(H WP, | SCA+ i)™ by (1),

On the other hand, writing

Vexp(—ilt tJo(H )P, =V, + )71 {1+
QI T4 OO A, + 1) L+ ]A]) T
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{ll+‘A|]_I*aE){p(“fHﬂt)Cb(Hﬂ]Pi} and obs-

erving that the first two terms are bounded by .

hypothesis and Lemma 2 respectively, we have
the result on applying (1) to the last part.

(iti) Firstly, we note that ¢(H)— ¢(H,) 18
compact just as (H+) '~(H,+i) '=—(H+
N"'W(H,+1) is compact by hypothesis. That
Q. —Do(H,)P, are compact follows by
writing the expression (Q, —1)¢(H,)P, =
II: exp(iHIVG(H, )exp (—iH,t)P, and ob-
serving that the integrand is compact by
hypothesis while the integral converges in norm

by (ii).
(iv) From the proof of (1) we have that

[P+ exp(£iH, )¢(H ) {1 +]A]) "=
I(1+ A" exp(FiH, )0 (H, )P, |

—0 as t— % oo and the required result follows
by observing that the range of {1 +[A})™* 1s
dense.

Theorem 4: Let v be as in Lemma 3. Then the
scattering system is asymptotically complete.

Proof We shall show that F,=E(H ), the
projection onto the continuous part of H. Since
the proof is symmetric w.r.t. the sign, this
implies that F, =F_=E_(H).

By Theorem 1 (i), F, €E(H) and we set
F'. =E(H)— F, which we assume to be non-
seto. Since both F. and E.(H) reduce H, sO
does F’, and since the continuous spectrum of
H is R*, a dense set in F’ is given by
2. = {$(H)fIfeF’, #, ¢ compact support in
R*—{0}}. Thus we restrict our attention 1O
vectors with total energy support compact 1n
R*—{0}ie feF', # J=¢(H)f and show that
this leads to a contradiction unless f=0.

We sct ¢, (E(0))=lim £ T~ [: TEe)dt, where
£ is a bounded continuous function and note
after Wiener (see reference 3)that if B 1s compact
and if JeE (H)#,thene (| Bexp{— iHt) 1}=0.

Thus

Ilfflz*':ﬂ+(|lﬂip(—fo)f]]2)=8+((¢XD(_fo)ﬁ
b(H)exp(— iHO M) =¢e. ((exp(—iHt),
Q,0(H,)P, exp(—iH1)]))~

eo{lexp(—1H1)y L(Q,—16(H, )P, exp
{(—iHt)f)}+

£y (lexp(—iHt)f, Q_ ¢(H, )P _ exp(—
tHtY)) —

g4 ((exp(—iHt },(Q_—1)(H, )P _ exp
(—iHt)}f))+

e ((exp(—iH)f, [O(H)— ¢(H,) ] exp
(—iHON).

In the above, the second, fourth and fifth terms
ar¢ zero by lemma 3 (ni) while the third is also
zero by lemma 3 (av). As for the first term we
note that (exp(—iHt)f, Q. g)=(exp(—iH t)2*
f,g)=0 since fis orthogonal to the range of Q. .
This leads to a contradiction unless F =0,

The above sketch of the proof shows that the
different propagation behaviour for the parts of
the phase space with P.@> or <0 (corre-
sponding to A $ 0) plays an essential role. For
more than 2-body the general idea persists,
however the required partition of the N-body
phase space is more complicated.

Next we will say a few words about long-
range scattering for 2-body system. In fact this
includes one of the most important applications
viz the Coulomb potential. Here we face the
difficulty early in the game—wave operators as
defined before do not exist i.e. the first problem
of scattering theory is not well-posed in the
form done earlier. We appeal to intuition and
see that it is not surprising, for the asymptotic
behaviour of the total evolution for such slowly
decaying potential is not expected to be that of
the free evolution, but as it turns out it is a
unitary evolution function of 4, or P.

For any general long-range potential V, it 1s
possible to write V=V, +V,, where V; is the
short-range singular part and ¥V, is smooth
long-range. So without loss of generality we can
assume the long-range potential to be smooth
and behaving like |X|™® at infinity with
0 <a <. For simplicity, we assume «>1/2 (this
includes the Coulomb case) and write

Yr =exp(-" fHﬂt—fX[),
where X (P)={} V(25P)ds, (6)

where t, is arbitrary, to be suitably chosen.
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Then Y, is an unitary function of momenta and
the main theorem is as follows.

Theorem 5. Let V be a smooth long-range
potential with a>1/2 and let Y, be as mn (6)
Thea (i) the modified wave operators (which are
isometries) Q, =s—1lim V}Y, as t—- 0 exist
and

(ii) the intertwining property holds,
HQ, =Q_ H,.

The detailed proof is long, can be found m (rel.
3) and will not be repeated here. We shall
instead observe that (i) implies that the total
group ¥, asymptotically behaves hke Y, instead
of like the free evolution group exp (—iH,t), the
part X, providing the distortion. In the case of
the Coulomb probtlem, this 1s famihar from
solution of the stationary Schrodinger equation,
and in this case

X, =(4H,) Y log|t] sgnt. (7)

The second problem, that of the asymptotic
completeness for long-range scattering 1s very
involved and for this we shall only refer to
[references 9,10] and te the recent book
(Perry)®,
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