17 February 1987; Revised 17 July 1987

- 1. La Touche, T. D., Mem. Geol. Surv. India, 1902, 35, 116.
- Coulson, A. L., Mem. Geol. Surv. India, 1933,
 63, 166.
- 3. Ross, C. S. and Smith, R. L., U. S. Geol. Surv. Prof. Pap., 1961, 366, 81.

INDUCED MUTANTS OF GROUNDNUT CULTIVAR PHULE-PRAGATHI

CHANDRA MOULI, D. M. KALE and G. S. S. MURTY

Nuclear Agriculture Division, Bhabha Atomic Research Centre, Trombay, Bombay 400 085, India.

THE popular groundnut (Arachis hypogaea, L.) cultivar Phule-Pragathi (JL-24)¹ is currently used as a national check in the yield trials of 'All India Co-ordinated Research Project for Oilseeds' (AICORPO) during the kharif² season. However, JL-24 is not superior to the other cultivars when grown in summer. Since the area under summer groundnut is increasing, it would be desirable to have a cultivar that can be grown in both the

seasons. To improve the yield potential of JL-24 in summer cultivation; the dry seeds were treated with different doses of gamma-rays and grown as reported earlier³.

Screening of more than 10,000 plants in the M₂ resulted in the selection of five mutants, JL-24M-1 and JL-24-2 having increased pod and seed size, JL-24M-3 with reduced pod and seed size; JL-24M-4 with pods as in JL-24 but having flat seed (figure 1) and the JL-24M-5 with increased number of branches. Among these the latter three bred true in M₃ and designated as small pod, flat seed and JL-24M-5 respectively. The true breeding nature of JL-24M-1 and JL-24M-2 could be established only in M₅ generation. The comparative characteristics of JL-24 and its mutants showed that the majority of them was similar to JL-24-1, except for the specific characters for which they were selected.

Yield trials of the mutants were conducted along with JL-24 twice in *kharif* and in summer seasons at Trombay and Gauribidanur and the results are summerized in table 1. All the mutants except the small pod gave superior yields as compared to JL-24. There was no difference in maturity period and shelling percentage between parent and the mutants. Hundred kernels weighed $67.5 \pm 1.2 \, \text{g}$,

Figure 1. Pods and seeds, JL-24 culture and its mutants JL-24M-1 (top row), flat seed and small pod (bottom row).

Culture	Location	Pod yield (kg/ha)			
		kharif season		Summer season	
		1985	1986	1986	1987
JL-24	Trombay	2507	2403	2480	1343
JL-24M-1		3083 😘	2985**	4083**	3456**
3L-24M-2		2940 **	27151	3604**	3020**
Flat seed		2774 *	26241	2704*	2659**
JL-24M-5		2821~	2764	2806	2867*
Small_pod		2020	1888	2224	2165*
C. D. at 5%		256	231	684	728
C. D. at 1%		339	346	819	842
IL-24	Gauribidanur	3183	2876	2546	2230
IL-24M-1		3417*	3236**	3850**	3699**
JL-24M-2		3315	3055	3234°	3454**
Flat seed		3216	2800	2744	2887*
JL-24M-5		3291	2905	2806	2606
Small pod		2225	2050	2398	2210
C. D. at 5%		149	182	624	594
C. D. at 1%		225	285	829	789

Table 1 Pod yields of JL-24 and its mutants

 65.9 ± 1.9 and 51.9 ± 1.1 in JL-24M-1, JL-24M-2 and JL-24 respectively, indicating increased seed size in the mutants. In addition JL-24M-1 had greater oil content $51.87 \pm 0.16\%$ as compared to $49.48 \pm 0.13\%$ in JL-24. The oil content in the other mutants was as in the parent.

The superior yield performance of the mutants in summer trial indicates a wider adaptability as compared with the parent variety JL-24. To evaluate the performance in different agro-climatic conditions all over India, JL-24M-1 has been included during kharif, 1987 in the AICORPO initial evaluation trials and Maharashtra state trials.

27 July 1987; Revised 20 August 1987

- 1. Patil, G. D., Desale, S. C., Patil, P. S. and Patil, S. S., J. Maharashtra. Agric. Univ., 1980, 5, 17.
- 2. Thote, S. G., Zade, N. R., Desmukh, N. S. and Reddy, P. S., J. Oilseed. Res., 1984, 1, 115.
- 3. Bhatia, C. R., Murty, G. S. S., Mouli, C. and Kale, D. M., Nuclear techniques and in vitro culture for plant improvement, IAEA. SM. 282/57, 1986, p. 419.

PUCCINIA HYDERABADENSIS A NEW GRAMINACEOUS RUST FROM INDIA

G. BAGYANARAYANA and E. JOHN RAVINDER

Botany Department, P. G. College of Science, Saifabad, Hyderabad 500 004, India.

During a survey of the rust fungus (Uredinales) flora of Hyderabad, the authors collected rust-infected leaves of a graminaceous host. A critical microscopic study of the material revealed the presence of an interesting species of *Puccinia*. A comparison with the known species of *Puccinia* on grasses (Gramineae) using Cummins¹ 'Group system' revealed it to be a hitherto undescribed species of *Puccinia*.

Pucinia hyderabadensis Bagyanarayana & John Ravinder sp. nov.

Spermogoniis et aeciis ignotis. Urediniis hypophyllis, minutis, sparsis, subepidermalibus, erumpentis, pulverulentis, epidermide rupta conspicua, pallide burnnea, maculis 0.2 mm diam; paraphysata, paraphysibus hyalinis, clavata vel capitata; urediniosporiis $30-40 \times 20-30 \ \mu m$, ovatis vel ellipsoideis, membrana $2-3 \ \mu m$ crassa, echinulata, cin-

and it show significant superiority over JL-24 at 5% and 1% respectively.