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ABSTRACT

A new class of digital differentiators, based on maximal linearity at a specific
frequency as the criterion, is described. These designs are shown to be superior
compare to those based on minimax relative error criterion for restricted ranges of
frequency in the low, middle and high frequency bands. A universal differentiator
design has also been described, which represents a distinct advance in the state of the

art.

INTRODUCTION

N this lecture, I shall concentrate on the de-

sign of finite impulse response (FIR) digital
differentiators (DD), primarily because the resuits
we obtained recently in this ficld are very signi-
ficant and are in contrast to the long-standing
belief that the best differentiators are those that
use the well-known minimax relative error
(MRE) approximation. The latter designs have
been extensively investigated by Rabiner and
co-workers'™3, and beyond formulating the
minimization problem, the designs are totally
algorithmic, and hence computer-aided. It has
been our aim, for the last several years, to
establish digital signal processor designs on the
same rigorous analytical base as their analog
counterparts. To this end, we have previously
investigated variable digital filters*® and
maximally flat FIR filters®™'% and obtaincd
some remarkable results. Application of the
same insistence on analytical rigour, rather
than the algorithmic approach, has led to
explicit mathematical formulas and elegant
analytical designs for DD’s, as will be illus-
trated in this lecture.

I must mention, at the very outsct, that
MRE designs are indeed very attractive when
one requires a wideband performance. In most
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of the practical applications, however, one
requires good diflerentiation over a limited
range of frequencies, and MRE designs cannot
efliciently be adopted for such situations. Over-
performance in differentiation has its own
disadvantage in communication, viz. it accen-
tuates out-of-band noise. Our designs, which
use maximal linearity as the criterion, appear
to be ideally suited for such applications. The
criterion itself leads to precise mathematical
formulation and solution, thus obwiating the
necessity of undue dependence on numerical
procedures and guarding against the associated
problem of sensitivity to finite word length. A
very remarkable by-product of our investi-
gations is a novel and efficient architecture of
digital differentiators for vanable f{rcquency
range of operation, where, simply by changing
the tap, onc can obtain a dcsired range without
changing any intcrnal structurc. This has
opened up the possibility of fabricating a
universal differcntiator chip, and has led to a
patent application'?, which we hope will be
granted soon.

THE PROBLEM

Let us now look at the problem., An 1deal DD
has the frequency response

i1 (@)=jw? jfl(w), -r<osn, (1)

where fl(w)=w is purely real (figure 1). The
frequency ¢ is of course in the normalizd
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Figure I. Frequency response H,(w) of maximally
linear (at w=0) DD for various values of V.

digital scale, 0 < w <= being the baseband. We
approximate H{w) with maximal linearity at
w=0 or nf2 or n for low, mid and high
frequency bands respectively; the correspond-
ing frequency responses will be indicated by the
subscripts [, m or M, and h. The relative error
(RE), in percentage, will be defined as

IH(W)lﬂlﬂ(w)ll/w, (2)

where H (w) is the approximating function.
Note that (2) involves only the magnitude
error. This is so because, in most of the
practical applications, the phase error 1s either
untmportant or can be made zero.

RE 2100

DD'S FOR LOW FREQUENCIES

Typical applications of low frequency DD’s are
Doppler radar and sonar, auto-pilotage, auto-
navigation and weapon control systems. The
simplest approximation to jw for low frequ-
encies 1S jsinw, which can bc writien as
(e — e #)/2 and realized as (z—2"%)/2 or
(1 —z72}/2, where, in the last form, there is an
additional linear phase, equal to —w. Also, the
length of the impulse response is 3, the values
being ho=1/2, h, =0 and h,=-1/2, which
shows antisymmetry. This simple example
motivates us to assume a general approxi-
mation to H {(w)=w of the form
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H{w)= ) d,;sin(iw), (3)
i=]
where n=(N—1)/2, N being the length of the
filter, and is assumed to be odd for well-known
reasons. We now force maximal linearity at
@ =0 by demanding the following:

H (w) =0 (4)
w={0
dH,(w)/dw| =t (5)
w=(0
d"H (w)/dw* =0, u=23,...,2n—1. (6)
w=0

Obviously, (4) is satisfied by (3); on the other
hand, (3) and (6) yteld n non-trivial equations,
which can be put in the matrix form

1 t 1 ... 1t e D

1 22 32 ... n? 2d,1 |0

24 3 ... n? 3d; 1=10
i s | (o]
(7

Crout’s method is used to soive (7), and results
in the following recursive formula'® for d,:

d = (— 1)1 "Z':' (2:'-!-1'—-1)‘:1&IHr

(2:‘—1) S\ 2i—1
it
i—1

i=nn—1.n—2,..., 1, (8)

where (0) is defined as 1 for k=0 and 0 for

k
k #0.

Another route to compute d,s is based on the
observation that dH(w)/dw is a rectangular
pulse of unit height for —a<w<n. If this is
approximated by a lowpass characteristic
H,(w) with maximal flatness at =10, then

LA

QH . {w)dw should give us an approximation to
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H{(w) with maximal linearity at w=0. The
maximally flat lowpass case was extensively
investigated earlier”!'%, and led to explicit
formulas for its coefficients a;, i=0 to n. In
terms of g;, we have established that

d;=a,f[i(1 —ay)], i=L2,...,n (9

If, in (9), one substitutes the explicit expressions
for a;, then some relatively tricky combi-
natorial manipulations lead to the following
explicit formula'? for d;:

- [{(3)) &)

2k 2k\ / 2n—2k
q;o(_l)q(q)(n-f-q)’

i=1,2,3,...,n  (10)

Of the three methods for computing d;s, as
given by (8), (9) and (10), the recursive formula
(8) takes the smallest computation time. This is,
of course, expected.

The performance of the maximally linear
(ML) differentiator for low frequencies is shown
in figure 1. Note that extremely high accuracies
are indeed achievable. For example, for an
RE< —200dB in the range 0<w<0.20x, the
MRE design requires N =127, whereas our
design can achieve the same with N=21 only.

DD'S FOR MIDBAND FREQUENCIES

In many communication systems applica-
tions, e.g. interferometer radar and phase
comparison monopulse radar, differentiators
having the highest accuracy in the midband
frequencies of the spectrum are needed, because
the most vital information is contained therein.
The MRE designs for such cases require the
use of half-a-sample delay/advance together
with an even N. Nonintegral delay is undesir-
able, particularly in large signal processing
systems, while even N deprives the system of
allied possible advantages, e.g. achieving difle-
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rentiation through FFT on a general-purpose
computer, when N is large. The ML designs, as
we shall show, obviate these disadvantages.

First, we consider an approximation to the
magnitude function, of the form

H,(w)=d, + zi d; cos (i),

n=(N—1)/2, N odd.  (11)

Maximal linearity at w=n/2 demands

H, {(w) = 17/2 (12)
w=nf2

dH, (w)/dw — =1 (13)

d“H, (w)/dw" w=n2 - 0,

u=23...,n (14

Note, from figure 2, that |H (w)|=|H(w)| is
periodic in @ with period 2z, symmetric about
(0, 0) and antisymmetric about (n/2, ©/2). If we
wish these features to be retained in H,,(w),
then it is easily shown that (11 odifies to

H(@)=(x/2)+ ¥, d;cos(io), n odd. (15)

Now applying (12)-{14) on (15), and solving the
resulting set of equations, we get the following
recursion formula’® for d;:

i—2
i—1
""fdi='—“"3"-ﬂ—+ L§ (—1) 2 x
22i—3+(i—|) l:=ﬂ'2--l

2k+i—1
2

2k—i+]
2

x{2k+1) day +1, (16}

i=n,n=-2,n—4,...,3 l;n=(N—1)/2; n and
N odd.

The performance of H, (w) is shown in figure
3. For comparison with the MRE-DD, et RE
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Figure 2. Frequency response of the ideal DD.

needed be £ —100dB for 045 n<w <055
then ML design requires just 3 mulitiplications
per input sample compared to 8 in MRE
design. Since N is odd, no nonintegral delay is
needed.

We next consider the possibility of realizing
the phase exactly. For this, we choose the
magnitude as

Hy(@)=Y" b,sin(iw),
=1

n=(N—1)y2, N odd, (17)
n=1 n
=(n/2) _Z d, sin(iow)—(1/2) ) d, sin (iw),
li;‘l:i I‘I;:n
n even. {18)

We have chosen even n because actual cal-
culations show this to be a better choice. We
now impose conditions (12)(14) on (18). This
gives two sets of linear equations, solving
which we arrive at the f{ollowing recursion
formulas?”:

i—2
i—1
2 "z
dl= - +
22!"34'(1..] h=§-%l'
2k+i—1
: 2
(=it S e (19
2....

i=n—1, n—3, n=-5,...,5, 3, 1 (descending

order)
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Figure 3. Frequency response H, (w) of maximally
linear (at w==n/2) DD for varicus values of n
[ =(N—1)/2]; n also corresponds to the tap number
for the case of variable frequency DD.

i odd; n even,
and

et -
+ Z (_”r+1 ('-l-:, l)dl+2ﬂ (20)

r=1

i=n,n—2 n—4,...,6,4, 2 (descending order)
1 even; n even.

The performance of H,, (w) is shown in figure
4. Again, these are superior to MRE designs
over narrow bands around =/2, extending to
about 25 per cent of the midband frequency
spectrum.

DD'S FOR HIGH FREQUENCIES

For DDs with zero relative error at w=mr,
we have a problem. To ensure the realization of
the factor j, we need an approximation of the
form X sin(iw), which is identically zero at
w=mn'! We can overcome this problem only by
introducing a half-sample delay (i.e. a factor
2~ 12} in the structure, as in MRE designs, but
we still score favourably because our designs
use substantially lower orders compared to the
MRE designs, for the same RE.
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| n= k+i—1
1Y+
+ ¥ (-1) (k__m)cm, (25)
oem i=n,n—1,n—-2,...,2,1 (descending order)
and
_O.61T
3 1
g L=
0.4m \i-1
n—i ; —
oz + 5 =y (P e, 8
r=1 2‘""'1

i=n,n—1,n—2,...,2 1 (descending order).

0
O-2m . 06T m For causal realization, we take the transfer
function to be
Figure 4. Frequency response H,, (w) of maximally
linear {at w=n/2) DD for various values of N, G(z)=jz""H (w)l
_' A
=7
We start with the function PP

Hy(w)=m Z c;sin(i—3w— iil d; sin (iw), "
i=1 = —(1/2 di ~n+i 1-— 2 - 27
n=N/2, N even, (21) (1 )i; 27" (1=27%) (27)

where the first summation requires a hali-
sample delay for its realization. Imposing the
conditions of maximal linearity, viz.

A possible structure of G(z) for n=3 (N=6) is
shown in figure 3.

The performance of H,(w) is shown 1n figure
6. For comparison with MRE DDs, constder a
specification of RE< ~60dB for 0.5a<w<m.

H(w) =7 (22)  Our design requires N=16, whereas MRE
@ design requires N=128! The ML DDs are,
dH, ()/dw =1 (23) therefore, particularly suitable for homomor-
d*H, (w)/dw" =),
HEK

u=2, 3,...,2n—1, (24)

and solving the resulting sets of equations, we
arrive at the following recursive formulas'® for
o and dg:

2i—3
_ i—1 N
€= o ) Figure 8. Realization of maximally linear (at w=r)

24f-—5+(,-._1 DD for N=6.
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Figure 6. Frequency response H,(w) of maximally
inear {at w=r) DD for various values of n.

phic processes and image enhancement apph-
cations.

VARIABLE FREQUENCY DD’S

Finally, we shall discuss a universal canonical
structure which can function as a ML DD at
w=0 or n/2, and which provides a variable
operating frequency range around these values
simply by changing the tap at which the output
1s taken.

- 2

Note: A # sign shouid be
assumed before P S(i=1ton),

whenever i-1 is a mulliple
of 4

1
Tap Nos{n):1Y

(1) (22

3V

Consider the function H_(w) of section 1V:

H, (w)= i d; cos (iw),

i=0
n=(N—1)/2, N odd.  (28)

This can be expressed as

H (@) = _}:ﬂ p;(cos w)'. (29)

The coeflicients p; are related to ds through
Chebyshev polynomials. Following some leng-
thy mathematical manipulations!®, we obtain
the following surprisingly simple results for p,:

po=n/2py=—4p;=0,j=2,46...;
(30)

p,=—(1/iN[1x3x5x ...x(i~2)],

i=3,95,7,.

A more suprising fact to be noticed is that
p.s are independent of n! This forms the basis
of our design for variable bandwidth differen-
tiators.

By a simple transformation of H,,(w), we can
get the corresponding H,{w) for variable band-

- 2.2 =2.2
1::’)2 (1:21 ) (1tzz )
s

G (z)or Gl(z)
( output)

Figure 7. Realization of variable frequency range DD for low (G,(z)) and midband (G,.(z))

frequencies.
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Figure 8. Frequency respouse H,(w) of vanable
frequency range DD at various output taps.

width operation; this is given by

H)(w)= i (—p:) (sinw),

{ odd
n=(N—1)/2, N odd.  (31)

For causal realization of (29), we take the
transfer function as

G (z)=2""H,(w) =(n/2)z "+
e/’ =2z
n S1+z7% N
a=nti _ . 3
+ E; piZ ( 5 ) (32)
[ odd

Similarly, for H,(w) the causal transfer function
1S

-= ‘ (1—z72\
@)= 3, (~mrip (20 o

i odd

Both G, (z) and G,(z) can be realized through
a composite structure, as shown in figure 7.
The outputs from taps numbered 1, 3, 5,...
correspond to those of differentiators with
n=1, 3, 5,...respectively. The perlormances at
various 1aps are illustrated in figures 8 and J.

The variable bandwidth differentiator can be
fabricated as a single chip and would be
narticularly useful in electronic scanning, beam
steering and adaptive image enhancement.
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