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Monte Carlo simulation of random magnets
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Significant progress has been made over the last
few years in our understanding of the physics of
random magnets using novel techniques of Monte
Carlo simulation. In this work | summarize some
of the recent results and compare these with corre-
sponding experimenta! data as well as the theoreti-
cal predictions.

Random wmagnetic materials and models

The atomsfions consntuting a solid material some-
tmes possess non-zero magnetic moment due o un-
paired spins and orbital angular momenta. Various
kinds of magnetic ordering, e.g. ferromagnetic, anti-
ferromagetic, ferrtmagnetic, are possible in such ma-
tertals at suificiently low emperatures. The nature of
the ordering, however, depends not only on the temp-
erature but also on the particular matertal under con-
sideration, For example, Euo orders ferromagneti-
catlly below the so-calted Curie temperature  whereas
MnF, and Rb,CoF, exhibit antiferromagnetic order
betow the corresponding Neel temperatures.

More than fifty vears ago Heisenberg showed that
the (exchange-) interaction between spins respon-
sible for the magnetic ordering arises from a proper
quantum mechanical treatment of the Coulomb inter-
action between charges and that the effective Hamil-
tonian for interacting spins. assumed located on lat-
tice sites, is given by
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H=— E J ) SI..S, (1)
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The spin f’;‘! at the ith lattice site on a d-dimensional
lattice inleracts with the Z nearest peighbours S, (Jj=
[,... Z) where the strength of the nearest-neighbour
exchange interaction is J . The summation on the
right hand side of equation (1) is to be carried over

all the nearest-neighbour pairs <ij >.
Fortunately, the Hamiltonian for several real mag-

netic materials s well approximated by the simpler
expression, the so-calied Ising Hamiltonian.

H=-2JSS, (2)

where each of the Ising spins can take only one of the
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two allowed values 5§ = 1. In the presence of an
external magnetic field the Hamirltonian for the Ising
model 18 given by

AH=-2J4 8§ S+LHS (3)

where H 1s the sirength of the external magnetic field
at the sth site. My discussion here will be based en-
nrely on the ISing model.

By ‘randomness’ and “disorder’ [ mean frozen
disorder rather than therma! disorder. Frozen ran-
domness can arise either from strong structural disor-
der (e.g. glasses that are amorphous) or from random
arrangement of atoms/ions on a lattice {e.g. random
binary alloys). A magnetic material with ‘frozen’ dis-
order can be prepared in the laboratory by randomly
substituting magnetic 1ons/atoms by non-magnetic
impurities, for example, (i) Co by Mg mn Rb,CoF,
(ii) Fe by Zn in FeF,, (iii) Mn by Zn in MnF,. and (iv)
dysprosium by Yttrium in dysprostum aluminium
garnet. So far as the theoretical models are con-
cerned. (quenched-) randomness can be ntroduced
into the Ising model {3) in several ways: (1) Random
exchange Ising models (REIM): Suppose. sach of the
lattice sites is occupied by an Ising spin with proba-
bility p and occupied by a non-magnetic rmpurity
with probability | — p. This is one of the several pos-
sthle ways of randomizing the exchange interaction
/. Note that H, is non-random in the REIM: usually,
one assumes H = A for all i (i) Random-field lIsing
model (RFIM). The exchange ieraction is assumed
to be non-random, but the field # 1s random. In the
RFIM one usually assumes J =J for all the nearest-
neighbour pairs < ij > In the laboratory 1t 15, how-
ever, not possible to vary the external field randomly
at the length scale of atomic distances. But, random
anti-ferromagnets in a uniform external magnetic
field are known to be physical realizations of the
(ferromagnetic) RFIM.

Compeiing ferro- and antiferro-magnetic inter-
actions can Jead to a different type of magnetic or-
dering, namely, the spin glass. However, | shall not
discuss spin glass ordering here and the reader is re-
ferred to a recent book' and review articles. " In this
paper | shall mainly review the recent progress m the
understanding of the physics of the REIM. [ shall
also briefly mention some of the recent interesting
results obtaned 1n the case of RFIM.
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A brief introduction to the crifical phenomena

Consider, for example, the paramagnet-to-ferromag-
net phase transition in the pure Ising model. The
spontaneous magnetization (i.e. magnetization in the
absence of external magnetic field), which is non-
zero in the ferromagnetic phase, vanishes continu-
ously as the tramsition temperature T is approached
from below. Therefore, so far as the ferromagnetic
ordering is concerned, spontaneous magnetization is
treated as the ‘order parameter’, a measure of the
(long-range-) order in the system. It 15 possible to
define a ‘correlation length’, that diverges at the
critical point 7. Theory of critical phenomena puts
emphasis on a few universal aspects of such phase
transttions, Most of the attention 1s focused on the
‘critical exponents’ that describe how specific ther-
modynamic quantities, e.g. the order parameter, the
susceptibtlity, vanish or diverge at the cnfical point.
This behaviour 18 captured n terms of certain critical
exponents that characterize the power law depend-
ence of these quantities on (7T — T). The standard
symbols used in the fiterature for the exponents asso-
ctated with the specific heal, order paramerer, sus-
ceptibility and the correlation length are o, B, v and v
respectively. These exponents associated with the
static properties are universal in the sense that they
depend on the spatial dimensionality, dimensionality
of the order parameter (one in the Ising case and
three 1n the Heisenberg case) and the range of the
inferaction but are independent of the other specific
details of the system under consideration. Thus, the
numerical values of the corresponding critical expo-
nents for the d-dimensional Ising ferro- and antiferro-
magnets with nearest neighbour exchange inter-
actions are the same.

Pure Rb,CoF, is a tetragonal compound where
nearest-neighbour CO?* ions are arranged on square
lattices in the basal planes. The planes of the spins
are¢ separated by two layers of RbF ions. Therefore,
the interplanar exchange coupling is much weaker
than the intraplanar coupling. Indeed, pure Rb,CoF,
1s one of the best realizations of the two-dimensional
Ising model®. The experimentally measured values of
the static critical exponents for pure Rb,CoF, are in
good agreement with the corresponding theoretical
values for the two-dimensional pure Ising model
whereas those for pure FeF, MnF, and dysprosium
aluminium garnet, for example, are consistent with
the corresponding ones for the three-dimensional
pure Ising model. Thus, Rb,Co, MgF 15 expected to
be a physical realization of the two-dimensional
REIM whereas Fe, _ZnF, and Mn_ZnF, should be-
have like the three-dimensional REIM,

According to the theory of dynamical scaling the
characteristic relaxation time 1T near the critical point
is given by T ~ &, where z is the (temperature-inde-
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pendent) dynamic critical exponent. The divergence
of Tas T—T Iy Kknown as the phenomenon of ‘critical
slowing down’. The exponent = can be predicted by
the theory of critical dynamics and for real materials
It can be measured, for example, by neutron scatter-
Ing. For example, the experimentally measured
value = = 1.67 for Rb,CoF, is in good agreement
with the corresponding theoretical prediction.

In conventional Monte Cario (MC) simulations of
[sing models consisting of N spins, one MC step con-
sists of the following operations: (i) a spin is selected
randomly for deciding whether or not to flip it; (i)
the energy change AE associated with that flip is
computed;  (ni1) the  transition  probability
W = exp (-AL/KT)/[[l+exp(- AE/K,T)] for thal
tlip 18 then computed; (iv) a random fraction
FCO0<f<1) 1s generated by the computer and if
f< W the spin is flipped (S, »=S). otherwise it is not
flipped; (v} the whole process (i) —(iv} is repeated N
times. The resulting spin configurations are used 10
compute the required thermodynamic properties.

Let us now summarize some of the common diffi-
culties encountered in computing the critical proper-
ties of a system uwsing MC simulation. The most
appropriate definition of the exponent ¢ for an arbi-
rary thermodynamic quantity X in a system undergo-
ing a thermal phase transition is e =lim (InX/
Iln +7) where + = (T-T )/T_is called the reduced
temperature. The actual dependence of X on ¢, how-
cver, can be expressed as

X=Ar“(1+b1+..),

where the terms other than unity within the bracket
give rise to ‘corrections to scaling’. Unless such cor-
rections are very small the effective exponents ob-
served in computer simulations will be ftar from the
true exponents if the simulation cannot be performed
very close to T.. But the closer is 7 to T, the larger
15 the correlation length and the stronger are the
finitc-size effects. Finite-size effects can be mini-
mized by simulating systems as large as possible,
albeit at the cost of enormously large CPU time. Very
large systems of Ising spins (even in the presence of
random exchange and/or random field) can be simu-
lated using a recent technique called multi-spin cod-
ing where the orientations of several spins are stored
in each of the computer words’ ®. Moreover, the
closer is T to T_, the slower 1s the simulation because
of the phenomenon of critical slowing down. The
latter difficulty, however, can be bypassed using an
efficient algorithm, proposed by Swedsen and Wang
(SW). In this algorithm instead of single spins, ap-
propriately defined clusters of spins are flipped.

Static critical behaviour of random magnets

A second order thermal . phase transition takes place



[E— T T T - _-_ _ - - -

REVIEW ARTICLE

—_— — e — e — — ——— ==

in the REIM at a non-zero temperature provided the
concentration of the spins p > p_. the so-called per-
colation threshold (see ref. 8 for a review). The tran-
sition temperature 7_( p } is a monotonically de-
creasing function of the impurity concentration and
T vanishes for all p s p. One of the fundamental
guestions is: are the critical exponents characlerizing
the thermal phase transition in the REIM al a given p
(p.<p<1) identical to the corresponding ones for
the pure Ising model ( p =1)?7 On the basis of a set
of heuristic arguments Harris” derived the [ollowing
criterion: if the specific heat exponent o for the
pure model is pesitive then the corresponding disor-
dered model would belong to a dilferent universality
class. This criterion implies that the crincal expo-
nents for the three-dimensional REIM are different
from the corresponding ones for the pure model for
which o = 0.11. On the other hand. since o 1S
negative [or the threc-dimensional Hersenberg moded
the corresponding disordered model should belong to
the same universality class as the pure model. So far
as the two-dimensional Ising model 18 concerned the
Harris criterion is inconclusive because the corres-
ponding o =0. Harris criterion has been  supported
by subsequent analytical calculations. However, the
resufts of the computer simulation of the REIM re-
main controversial, primarily because the irue criti-
cal regime for the latter model 18 too narrow to be
probed by most of the “traditional computational tech-
niques. More precisely, critical slowing down prohib-
tts the traditional smmulations to be carried out suffi-
ciently close to T (see ref. 5 and  references thereind.
As stated earlier. the best algorithm to bypass the
critical slowing down 18 the SW algorithm. Using this
algorithm Wang and Chowdhury'® have computed the
eftective exponents for various values of the reduced
temperature ¢ = (T —THT and extracted the asymp-
totic values of the exponents in the limit /7 —— O by
extrapolatton. It turns out that v = 1.5 £ (007 and v
= 0.75 £ 0.04, These values are in good agreement
with those obtained in a very recent simulation'' cur-
ried out in the same range of temperature using a dif-
ferent algorithm.

Let us now compare the exponents obtained by the
MC simulation with the corresponding values ob-
tained from experimental investigations of the ran-
dom Ising magnetic materials and with the corres-
ponding theoretical predictions. To my knowledge,
the best theoretical estimates of ¥ and v are 'Zy =
1.336 and v = 0.678 whereas the mosi careful experi-
ments (see ref. 13 for review) yield B = 0.35, v =
1.31, v = 0.69. Surprisingly, the MC simulation
seems to have overestimated the exponents although
there are one or two experiments that yield exponents
close to the MC estimates. A possible interpretation
of this Inconsistency between theory and MC simula-
tion is that the effective exponents are nonmonotonic

458

- e oEm—— - —

kg r 1 —

—_ J—

functions ot the reduced temperature ¢ (ref. 14} and
the higher values of vy and v are consequences of a
narve extrapolatton to # -» 0. However, a recent at-
tempt™” to detect such a maximum, if any, in v ()
using the so-called Wolft algorithm (which is little
more cfficient than the SW algorithm) on transputers
(a type of parallel processing computer), has been in-
conclusive. Unfortunately, even the MC simulation
using the SW algorithm at ¢ = [0 cost about 500 h
of CPU time on an 1BM 3090 which is almost as fast
as a Cray computer. Therefore, at present, the com
puter ume required for simulation at ¢ = 10 would
be prohibitively large.

Critical dynamics of the REIM near the bi-
critical point

Theoretical activity in this field was triggered by the
inelastic neutron scattering study of the site-diluted
antiferromagnet Rb,Co, Mg F, ~ with Co concentra-
tion necar the percolation threshold'®. The experimen-
tally observed value - = 2.4 55 much larger than the
prediction = = 1.67 from the standard dynamical scal-
mg. Aepph e¢f «f. aitributed this discrepancy to  toe
Fact that “in a system as ramified as a percolating
network, disturbances require a longer time to propa-
gate between two points than they do on a regular
lattice”. Using the known fractal properties of the
percolating networks they proposed. a scaling argu-
ment that apparently reconciled theory with experi-
ment. More refined scaling arguments were  proposed
later'’. However. all these attempts began with the
asswmiption that the standard form of dynamical scal-
tng applies to the system under investigation. On the
other hand, most of the subsequent theoretical
work'® ¥ as well as computer simufation™™" indicate
the breakdown of this standard form in the dilute
Ising magnets near the percolation threshold. For
cxample, Harris and Stinchcombe=® suggested that
the dynamic exponent ‘z should really be infinite,
and that the experiment sees a finite effective value
limited by how close to the percolation bicitical
point T = 0, p = p_the measurements are made.’
From these recent theories one concludes that at
p = p_ the standard dynamical scaling must be-r&
placed by the so-called ‘singular’ dynamical scaling

mt=A(nER+BInE)+C (4)

where A, B and C are constants. Comparing this form
(4) with the standard dynamical scaling form

mTt=B(ng)+C, (3)

we conclude that both the forms (4) and (5) are spe-
cial cases of a generalized dynamical scaling form
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Int=f(n¢& ), (6)

where f is a function of In & . Thus, (4) corresponds
to f {(x} = Ax" + By + ( whereas in the case. of the
standard dynamical scaling (3) f (x} = Bx + C.

The singular dynamical scaling form (4) 1s a con-
sequence of the fact that the most divergent energy
barriers to overturning of spin-clusters of size L is
o< In L. which, in trn, 18 a consequence of the
(statistical-) self-similarity of the percolation clus-
ters (see also ret. 27, 28 tor related models and ref.
29 and 30 for reviews). MC simulation of the Ising
model with quenched disorder in two dimension=* -
as well as in three dimension®® demonstrate the
breakdown of the standard dynamical scaling (5) and
indicate the existence of a singular form (4). The ex-
isting expertmenjal data, however, are not suffi-
ciently accurate and can be fited to both the forms
(4) and (3); some more accurafe experiments are in
progress (G. Aepplt, private communication). Some
aspects of this singular dynamical scaling, however,
remain controversial: for example, whether the con-
stant A 1s an universal quantity in the same sense as
the critical exponents,

Kinetics of domain growth in random magnets
far from equilibrium

When an Ising magnet is quenched, ie. cooled rap-
idly, domains of up (down) spins grow at the cost of
the domains of down (up) spins. It 1s now well known
that the linear size R of a domain grows with time ¢
following the so-called Allen—Cahn law R- e f. This
law is a consequence of the fact that the local veloc-
ity of the interface separating the up and down spins
1s proportional to the local curvature.

Recently, the effects of random field”* as well
as that of random impurities (ref. 33 and references
therein) have been investigated by MC simulation. A
‘crossover’ from the power-law growth (during the
very early stages) to a logarithmically slow growth
(in the late stages) has been observed in both the
cases. Such observations are consistent with the theo-
retical conjectures that domain growth would be
slowed down by the pinning effects of the random
fields and the random impurities which roughen the
interfaces. However, a detailed discussion on the
various aspects of roughening of the interfaces 1is
beyond the scope of this paper.
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