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Topological field theories

R. Rajaraman

THeoRETICAL high-energy physics throws up, every few
years, newer and more complex formulations which we
hapless soldiers in the field have to contend with and
absorb. In the last five years, beginning with the
reincarnation of String theory, hife on this treadmill has
become even more frantic, with an explosion of new
theoretical structures and concepts. One such very
recent concept 158 that of a Topological Field Theory
(TET).

This 18 not a topic that iends 1itself easily to a simple
semi-technical level introduction. It 1s fairly abstract,
deahing with 1deas that at first sight appear to be more
mathematical than physical, and was not designed
a priori to model any specific experimental phenomenon.
Nevertheless, it 1s a very interesting subject at the
conceptual level and, like other elegant theoretical
structures born ahead of their times, may eventually
end up having important applications. Besides, TFT 1s
a part of the larger subject of quantum field theores in
curved space-time, which are already playing a major
role in theoretical physics at both the microscopic and
cosmological scales. We will therefore attempt to
provide here some background on quantum field
theories in curved spaces, suflicient for giving, at the
end, a glimpse of what TFT 1s.

Quantum field theory deals with the quantum
behavior of different types of waves, which, following
the wave-particle duality inherent in quantum theory,
are also expected to yield as their quanta some
elementary particles. For several decades, such quantum
field theories constructed to describe elementary
particles were mostly couched in ‘flat space-time’. Let
us explain this remark. Consider that prototype
example, the quantum theory of electromagnetic waves
(free photons). These waves, called the ‘fields’ of this
theory, are described by a set of four functions of space
and time, A(1,%), one for each value of the index
#=0,1,2 or 3. These 4, are nothing but the famibar
electromagnetic potentials we study in textbooks on
classical electromagnetic theory. What is important to
note for our purposes is that the underlying space-time
continuum (labelled by the coordinates (¢, X)) in which
these fields propagate was taken to be flat—1in the same
sense that a table top is flat. This was done not merely
for simplicity but also because the space-time on and
near the earth, where laboratory experiments are done,
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is flat to a high degree of accuracy. For instance, to give
one indicator of the flatness of space, if you set up in
your room a trnangle made of three meter-sticks, the
sum of its angles will be very close to 180 degrees,
unlike, say, ‘triangles’ made up of great-circle segments
on the surface of a football. It i1s therefore reasonable
that people used a flat space-time, not only for the
theory of free photons, but also for the more
complicated quantum field theories (collectively known
as the Standard Model} which describe the electro-
magnetic, weak and strong interactions of all elementary
particles. This is adequate for describing their terrestrial
behavior.

Meanwhile, Einsteig's General Theory of Relativity
tells us that curvature of space-time is associated with
the presence of gravitational forces. Using flat space-
time theories of elementary particles is equivalent to
tgnoring gravitational forces acting on them. Why is
this permissible when direct personal experience tells us
that there i1s very much a force of gravity due to the
Earth permeating, among other places, every nook and
cranny ol every particle-physics laboratory? The reason
is that the gravitational field due to the Earth 1s in fact
intrinsically very small. In appropriate dimenstonless
units, the gravitational potential due to the earth at its
surface is about 107°. Furthermore it does not vary
much over nuclear size scales. Hence individual
elementary particles like protons feel only a tiny force
of gravity due to the earth and even less due to one
another. The other forces, nuclear and ¢lectromagnetic,
that act on, say, a proton in a nucleus or in a colliston
experiment are overwhelmingly larger. (This assertion
that the Earth’s gravity 1s small may be indignantly
contested by someone who has just fallen down the
stairs or been struck on the head by a descending apple.
But the admuttedly large pull of gravity that you and I
and the apple feel is because our own masses are large.
By contrast for the tiny individual elementary particles
in our experiments, the approximation of neglecting
effects of gravity and of space-time curvature is quite
justifiable.)

When 1s it that we really need field theories 1n curved
space-time? Clearly, when the gravitational field 1s very
large, and rapidly varying. Such strong gravity may be
expected in the vicimity of very heavy and compact
astronomical objects like black holes, or better still, in
the universe in 1ts early stages when all its mass 1S
believed to have been concentrated in an extremely
small volume, leading to awesome gravitational forces
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and huge distortions in spacetime. If one wished to
study microscopic physics in such an environment then
curved-space [field theory becomes essential. Such
studies gained popularity as people began to get
interested in questions like particle production near
black holes etc., and in quantitative attempts to model
the early stages of our universe, its ‘inflation’ scenario
and so on, Interest in the early universe was not limited
to cosmologists alone. It was also shared by particle-
physicists because of their widely held view that the
somewhat complcated elementary particle interactions
we find today could have originated from more
symmetric and unified patterns in the early universe,
thanks to some phase transitions. Field theories in
curved manifolds also received a major impetus from
the philosophical compulsion felt by particle-theorists
that a complete quantum theory of fundamental
interactions must include gravity in its purview. Further
momentum came from superstring theory. A string,
when 1t propagates, traces out a 2-dimensional curved
surface, and 1ts oscillations can be,viewed as wave fields
on that surface. Motivated by the physics of all these
important problems, a large body of work has emerged
in the last two decades on quantum field theories in
curved space-time and the subject has taken on a life of
its own, with experts merrilly pursuing ifs various
ramifications. Studies were done not only on 4-dimen-
sional space-time surfaces but also in 2, 3. as well as
higher dimensions.

For illustration consider the Klein-Gordon system.
In 4-dimensional flat space-time it obeys the familiar
wave equation

2 o
(i-v2)¢(z,f) +mée (t,X)=0 (1)

The Action which yields this equation, in relativistic
notation, 1s

1
S1=§ jd*x(n o, d8,¢ —m* ¢%) (2)
where x*(1=0, 1, 2, 3) is the space-time coordinate,
o
= e

nv =0 if g,
and #°°= —ptl= —p22= —y

The corresponding Action for the Klein-Gordon field in
an arbitrary n-dimensional curved space-time is

33:1

S3=5 [d"x (Det |9, 1)t (" 0,96,8 —m4Y) ()

where the tensor g,,(x) is the ‘metric’ of that curved
space-time, which contains the geomeitrical information
about that surface, such as its curvature at each point x
and so on. g** is the matrix inverse of g,,. The Action
(3) has been designed to be invariant under any general
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transformation of the c¢oordinates describing the
surface, from x* to some (x')*, provided all scalars,
vectors, tensors etc. are also transformed by their
appropriate transformation laws:

As x#—={x\

¢ (x)—> ¢ (x')= (x)

) ] ax.l
Ay (x)— A", (x )=§x"“A‘:‘(x)
NN > '
guv {x)—kg uv (J- )—6:("“ Ox'V 1p (x) (4)

This requirement of the invariance of the Action follows
from the principle of Relativity. Recall that in Einstein’s
Special Theory of Relativity, physical laws are required
to be the same if one goes from one coordinate frame to
another which 15 moving at a uniform velocity with
respect to the former frame. This change of frames
corresponds to a special subset of coordinate transfor-
mations, namely, the Lorentz transformations. In
General Relativity, all coordinate transformations are
considered, including those which correspond to arbit-
rarily accelerated frames. It is straightforward algebra
to verify that under such general coordinate transforma-
tions (4), the Action (3) is indeed unchanged.

As we all know, the sound waves emitted by a tabla
depend, among other things, on the size and shape of
its membrane. Similarly one would normally expect
that the dynamics of any field theory should depend on
the geometry of the underlying space-time. It 1s only
reasonable that the physical content of a system, such
as 1*s correlation functions, the masses of its particles,
their interactions etc. should change if the underlying
space-time 18 bent, twisted, shrunk or deformed in some
other way. For the Kilein-Gordon example, such
dependence on the geometry of its space-time 1s
reflected by the presence of the metric g,,, in both the
Action (3) and the wave equation that emerges from it.
This dependence of the dynamics on the metric g,, can
also be interpreted in another way in accordance with
General Relativity, Instead of interpreting the object
g,, {x) in the Action (3) as the metric, 1t can be
alternately viewed as an external gravitational field
acting on the matter field ¢. The dynamics of the
waves of ¢, or their quanta, will obviously depend on
whatever external forces act on them, which in the
present case stem from the gravitational field g,,.

Usually, field theoretic Actions, if required as per
General Relativity to be invartant under general
coordinate transformations x*—(x'y, will depend on
the metric, as happened in the Klein-Gordon example.
There are dozens of such examples involving scalar,
spinor and vector fields. There are however, some
exceptions, and that leads us at last to Topological
Field Theories.
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First a capsule explanation of the word ‘topological’.
Two surfaces are said to be in the same topological
class, or be topologically equivalent, if they can be
converted from one to the other by smooth deforma-
tions. In this process of ‘smooth deformations’, any
finite amount of stretching, pulling, twisting, bending
and shrinking of the surface are all allowed, but not
punching holes in 1it, nor cutting or tearing it, nor doing
the opposite of tearing, ire. pasting portions of it
together. Using these guidelines one can see that the
outer surfaces of a ball, an egg, and a cube are all
topologically equivalent. Obviously two topologically
equivalent surfaces must have the same dimensions, but
this alone is not sufficient. For instance, the surface of a
car tyre’s tube (a torus) is not in the same class as the
surface of a ball and neither i1s 1n the same class as a
disc {(a circle including its mtenor), though all these are
2-dimensional. Skeptical readers are invited to try and
convert these mmto one another without viclating the
rules given above.

In this fashion all surfaces in any given number of
dimensions can be divided into topologically distinct
classes. Within the same class, two members have the
same topology but they need not have the same
geomefry, 1.€. the same shape, size, curvature etc. These
geometrical features that distinguish two members
within the same topological class, such as the surfaces of
a sphere and an egg, are contained in the metric tensor
g,y Which will be different for the two surfaces. In turn,
gach topological class 1s characterised by topological
invariants, which distinguish 1t from other classes. For
instance, the surfaces of the ball and the egg have no
holes or “handles” in them whereas the surface of a tyre-
tube (and of a tea-cup which is topologicaily equivalent
to 1t) carries one hole/handle.

Returning to field theories, we have seen that themr
dynamics usually does depend on their space-time
geometry. There are however exceptional cases of
systems, whose quantum dynamics does not depend on
the geometry of the underlying space-time surface but
only on the broad topological class to which 1t belongs.
These are Topological Field Theories.

One way ¢o try to get a TFT 1s to start with an
Action which, although general coordinate mvarant,
does not depend on the metrnic g,,. These are the TFT's
of the ‘Schwartz type’, of which the prototype example
1s the abelian Chern-Simons Theory 1n 3 (two-space-
one-time) dimensions® ~°. Its Action is

S,=[dx e 4,8, 4, (5)

Here A, is a gauge field and ¢** is the fully
antisymmetric Levi-Civita tensor. Even though the
metric does not appear in (5), nor covariant dertvatives
of A, that integral is in fact general relativistically
invariant since it is unchanged under the transforma-
tions. x*—(x"y, with 4,(x)— A4, (x") as per {4). The field
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equation arising from (5) is,
gy apAv = %Einv F“-,, = {) {6)

Since nerther (5) nor (6) depend on the metric g,,, if we
changed the geometry of the underlying 3-dimensional
space-time without changing its topology, the classical
dynamics of this wave field 4, will not be affected at all.
Of course we cannot extend this statement across
different topologies. Surfaces with different topologies
cannot even be covered by the same set and range of
coordinates, so the question of fields having globally
identical dynamics does not arise.

The metric independence of the Action (5) and the
field equation (6) tells us that classically the system
depends only on the topology of its space-time. This
property could have conceivably broken down at the
quantum level. To quantise this system, say, in the path
integral formulation, one must add gauge fixing terms
to the Action (5) which generally involve the metric.
Also, the path integral measure could, in order to
preserve general coordinate invariance, involve the
metric. It has however been shown that for the 3
dimensional Chern-S1imons theory, possible metric
dependences from these sources cancel out®. In fancy
language, this system has no ‘topological anomaly’.

One can obtain other TFT's by generalising the
abelian Chern-Simons system (5). For mstance 1ts non-
abelian analogue 15

Sa=Zm [ d®xe™ Tr (40,4, 1 34;4,4,) (7)

where A4; now is a matrix-valued Yang-Mills field.
Generalisations can also be made to higher odd-
dimensional Chern-Simons systems. For instance,
abellan Chern-Simons theories m 5 dimensional space-
times with and without boundaries have been studied in
some detajl’ 8,

In the examples mentioned above, quantum TFT's
have been obtained by starting from their classical
counterparts, .. by the simple device of thinking up
integrals {(involving some felds) which, while being
general coordinate Invariant, nevertheless do not
involve the metric. The so-called Witten-type of TFTs
are even more remarkable in that their Actions do
involve the metric of the underlying space-time, and yet
the quantum theory is topological®. Their quantum
partition functions do not depend on the metric. This
happens whenever the system’s Action 1s 1tself the
vanation under a ‘BRST’ transformation of some other
Action. To those who are not familiar with what a
‘BRST transformation’ means, its only feature relevant
for our purposes is that it 1s generated by a nilpotent
fermionic charge. Yet another type of TFT, again
studied in depth by Witten, 1s the Topological Sigma
Model'? ' where independence is demanded from the
metric of not just the underlying space-time of the
theory, but also that of the ‘target space’ 1.e. the space
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of fields. We will be content with having just made &
mention of these other types of TFT. To elaborate on
them further, or to discuss the refationship of TFTs to
other theoretical structures like Conformal field theones,
Instantons etc., would require setting up more technical
machinery than what would be appropriate for this
article.

In topological field theories, all physical quantities
will be topological invariants, 1.c. objects constructed
without using the metric. Take the simplest example,
the abelian 3 dimensional Chern Simons theory (5). It is
pgauge mvanant and 1ts field equation (6) says that
. the set of clectric and magnetic fields written in
relativistic notation, vamshes. Now, ordinarily (that 1s
(o say 1n famihar {lat Minkowskian space-time) if the
electric and magnetic fields vamished everywhere, there
would be no physical degrees of freedom left from the
A;. This, however, nced not be true if the underlying 3
dimensional space-ume has a complicated topology,
with boundarics, holes ete. Then some degrees of
frecdom could survive, because there can exist some
solutions of the differential cquation (6) which cannot be
gauge-transformed away. Such solutions will of course
depend on what that topology is but not on the metric,
which appears nowhere in (6).

Deep connectiony seem to exist between THT's and
aspects of modern mathematics. A prominent example
involves the theory of ‘knots, a preoccupation, once
again, of Topologists. The basic theme ol this theory 1s
not hard to explain. Imagine some closed curve lying in
3 dimensions. [t may not always be possibie to spread
this curve out into a nice circle without first snipping
it-— it might have wound around itsell a few times to
form a knot. Such a knotted ¢closed curve may also not
be smoothly shrunk to a point—the knot would
intervene. Not only i a knotted curve thus topologi-
cally different from an un-knotted one, but clearly there
can be knots of different types and complexity, leading
to questions of whether or not a given knotted curve
can be deformed into another. A collection of several
such curves weaving through one another form even
more complicated entities cailed ‘links’. Unravelling the
mysteries of knots which cannot be unravelled 1s just
the sort of thing mathematicians love. They have
classified all such knots and links imbedded on 3
dimensions, in terms of certain ‘knot-invarants’,

What does all this have to do with field theory? Well,
in any quantum field theory one is primarily interested
in correlation functions, t.e. vacuum expectation values
of products of physical operators. Now take our 3
dimensional Chern-Simons theory (5). This 1s a TFT as
well as a gauge theory. Physical guantities in this
theory must be both gauge invariant and topologically
invariant. The famous Wilson-loop operator

W[C]=exp.{§ A,dx"} (8)
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provides such an obiject. It is gauge nvariant and, being
invariant under general coordinate transformations (4)
without involving the metric, 15 also a topological
invariant. This operator {(and its non-abehan analogue)
are widely used in gauge theories for many purposes
including understanding ‘quark confinement’, and ifs
correlation functions would in any case be of interest in
any gauge theory. The line-integral in (&) 1s over some
closed curve C lving in the 3-dimensional space-time of
that Chern-Simons theorv. Now we know from Stokes’
theorem that if we deform this curve C a little the
line integral 6.4,dx* will be altered by the electro-
magnetic flux through the extra area-element swept by
the curve during the deformation. However, since the
electromagnetic field F,, vanishes for the Chern-Simons
theory (see eq. (6)), this flux 15 zero. Hence smooth
deformations will not aiter the value of the Wilson loop
W(C). In particular, if the curve C could be shrunk to a
point, it means that ¢, 4,dx"* vanishes and W(C)=1.
It 15 only when the curve C cannot be shrunk to a point,
as for instance if 1t 1s knotted, that W (C) will be non-
trivial, with a value which can depend only on the
topology of the curve . Simiarly the correlation
function of a product of Wilson loops {(W(C,) W(C,)
W (C,)...> can depend only on the topology of the
knotting and mutual hnking of these curves C,,C,, C,
etc. These statements can be generalised to the non-
abelian case {7). The relationship to the mathematics of
knot theory is thus plausible. Witten showed' that in
fact the correlation functions of products of Wilson-
loop operators in the Chern-Simons theory (7), when
evaluated, yield precisely the knot 1nvariants invented
by mathematicians.

No physical applications have been suggested so far
for TFT's as a class, applications which rely specifically
on the property of their being topological. But the
Chern-Simons system 1s already being used in a variety
of contexts in physics. A prominent use is in the subject
of Anyons— particles which are neither Bosons nor
Fermions, but lie tn between. Such beasts can exist in
2+ 1 dimensions and can be produced {rom ordinary
Bosons by coupling them to the A4, of the Chern-
Simons system (5). And, Anyons in turn have been
suggested as part of a mechanism to explain high-T,
superconductivity®. Surely, as time goes on, topo-
logical field theories will have even more links with
down to earth physics!
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