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The purpose of these notes is to tlluminate some problems and results on stability in thermodynamics,
kinetics and dynamics and to introduce the readers to corresponding mathematical tools. Physical
phenomena presented here are restricted by the asuthor’s interests and knowledge: phase separation,
Rayleigh-Bénard convection, non-linear elasticity, short-wave optics and diffraction. Dissipative
structures, intermediate asymptotics, solitons and catastrophes appear there as convenient theoretical
models. Geometry brings claniy to general considerations.
We suggest that the reader follows further the validity (or invalidity?) of a few metascientific conceptions:
(i) Stability : everything that is observed in natural or numerical experiments is stable.
(i) “Feynman principle” : the same equations have the same solutions.
(iii) Symmetry implicit and explicit — does everything hidden become evident?
(iv) Unity of nature — is this its inner property or that of our viewpoint?

THERMODYNAMICS OF PHASE SEPARATION

The phase separation theory deals with an energy function of concentrations u = (uy, ..., U,)
defined for pure states of the mixture. Pure states may coexist in mixed ones. Then the average
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* Dr. Givental, was unfortunately not able to participate in the symposium at Bangalore in December 1988. Nevertheless,
he sent in his paper which is reproduced here — the editors are deeply indebted to him.

1052 CURRENT SCIENCE, VOL. 59, NOS. 21 & 22, 25 NOVEMBER 1990



GEOMETRY, STABILITY AND SYMMETRY

energy and average concentrations of components depend on those parts linearly. The mixture tends to
the mmimum of the energy. This rule leads to the (meta)stability criterion (figure 1). A pure state is
metastable (= stable with respect to a small separation) if and only if the graph of f is convex up at
the point. An effective average energy function graph is the convex hull of the initial one. Pure states
where effective and initial graphs coincide are stable (with respect to any separation).

The next question is how the phase separation happens in space and time. It leads us to diffusion
kinetics.

DIFFUSION KINETICS

One may use the Van-der-Waals’ gradient approach and introduce the following energy functional

Flul = [ [f6) + ul2] dx (1)

space

Now u is a concentration field varying in the space. Time evolution of the field satisfies a kinetic
equation called in the context the Cahn-Hilliard equation

U= (8F/ By = — Uy, + (lower terms). (2)

The evolution under the equation is purely dissipative: average concentrations are preserved and energy
F never increases. Therefore time-peniodical solutions are impossible. But space-periodical stationary
solutions are possible and do exist. For a binary mixture and one-dimensional space (# and x — scalars)
they all correspond to segments shown on figure 2a and depend on two continuous parameters — spatial
penod T and average concentration /. For fixed 7, U there 1s only a finite number of stationary states
which differ by a discrete parameter v — the number of their semiperiods on the interval T (figures 2b ~ d).
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It is intuitively clear that a separation decay will tend to the ground state with v = 1 (figure 2d).
But a numerical experiment (Mitlin-Manevich-Erukhimovich) shows that the decay of unstable statio-
nary state w(x) = U leads to a periodical stationary regime (as in figure 2b for example) living
unlimitedly long. In contradiction to this, one can prove:

Theorem. States with v > 1 are unstable, they are saddle points of ¥ in the functional space of
concentration fields with fixed T and U.

Moreover a similar result is valid for periodical stationary states of multicomponent mixtures.
Moreover similar results can be found for the space of dimension more than one. These results lead
us to the unstability principle: stable phase separation states must have the simplest structure.

To bring sense to this statement we note that the structure of the whole 1 determined by the structure
of its parts. So it would be better to begin with the parts and then reconstruct the whole. We will give
now two statements built by this rule. The first of them is a conjecture, the second a theorem.

(i) Let a stationpary state in the area with a flat boundary be given (figure 3a). We may extend
it onto an area double the size by reflection in the flat boundary. Then this stationary state m the
whole area 15 unstable.
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(ii) Let a stationary state in the rectangle be given (figure 3b). We may extend it by reflection
onto nearest rectangles of the lattice and then periodically on the whole space. We get a periodical
‘symmetric stationary state in any area consisting of rectangles. If the number of rectangles 1s more
than one then this state i1s unstable.

Returning to binary mixtures in one-dimensional space we describe now stability criterion for states
with v = 1. Calculating energy for such states we get a function F(7, U).

Theorem. The state is stable if and only if Fis convex up at the point corresponding to the state.

This result returns us to thermodynamics but with a new “extensive’” parameter — the size of the
space area.

INTERMEDIATE ASYMPTOTICS

Appearances of unstable states in numerical experiments make us think about these states as inter-
mediate asymptotics and to describe the process as wandering to the ground state via unstable ones.
Further numerical experiments (Mitlin-Manevich) — on significantly greater time scales than before ~
justify this program.

To realize it we need to know the lifetime of unstable states. It is an open question on instability
increments. An exact formulation of the problem concerns to do with the family of stationary states
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in the infinite one-dimenstonal space with fixed average concentration U and growing spatial period T.
The question is: what is the asymptotic behaviour of the largest eigenvalue of the linearized equation
(2) when T — <« and what does the eigenfunction look like? The answer i1s found only for stationary
states that are close to the constant U not just in average but pointwise (Dobrynin-Givental’). This
problem is nontrivial only for U close to the inflection pomt of energy function graph (figure 1) — the
boundary between meta- and instability. Otherwise the relaxation time tends to that of the constant
unstable solution u(x) = U. For the nontrivial case the relaxation time tends to infinity as (const) T°.
The coefficient can be found explicitly. The eigenfunction has a pertod 27. This means that decay of
the stationary states in question will pass preferably in the direction of the period’s doubling.

These results are based on a surprising mathematical relation between phase separation and quan-
tum scattering theory. It begins with the stupid question: what are the periodical functions u for
which our ecigenvalue problem can be reduced to that for Schrddinger’s equation with potential u?
The answer 1s:

(1) If and only if u 15 a solution of stationary Cahn-Hilliard equation with polynomial energy

function f of degree three!

(i1) Such solutions are two-zone potentials and spectral problems for them are exactly solvable.

The further idea is to approximate any energy function near inflection point by a cubic polynomial.

The general mathematical causes of these surprising coincidences are hidden inside the theory of
Korteveg-de-Vrnies equation but are not completely clear.

CHEMICAL KINETICS

The instability of periodical solations of equation (2) is closely related to its purely disstpative charac-
ter. Being linearized near a pure state u(x) = U equaticn (2) remains spatially homogeneous. So
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eigenfunctions of a linearized equation are exponents exp(ikx). It remains isotropic. So the eigenvalue
A depends on | k [* only. This dependence is called a dispersion relation and looks like figure 4a.
Amplitudes of eigenfunctions vary in time as exp[A(k)z]. Thus pure states lose their stability through
long-wave perturbations.

Quite another loss of stability — through middle-wave perturbations (figure 4b) — can take place
for equations of “diffusion + reaction” type where average concentrations are not preserved. This
actually happens in the model (and really representative) equation

U= — Uppy — 2y — (1 — € u— 0. (3)

It is known (a strict proof seems to be due to Arnol’d) that periodical stationary solutions
exist for all “unstable” spatial frequencies (e > 0, M(k) > 0). The question about their stability is
answered by the Echhaus criterion displayed in figure 4¢: stable perniodical stationary states do exist
and their spatial frequencies are determined asymptotically for € — (0 by the universal constant 2/3.

RAYLEIGH-BENARD CONVECTION

A similar situation takes place in Rayleigh-Bénard convection theory. A layer of viscous fluid heated
from below becomes unstable for some critical value of the heat flow and convective motions arise.
Under small overcriticity the convective flows form stationary periodical structures of regular sym-
metry: rolls, rhomba or hexagons filling the plane. Mathematically an mvestigation of the phenome-
non can be reduced to that of an equation of type (3) but in two spatial variables. The thermocon-
ductivity and hydrodynamics replace the diffusion and reaction. The unknown u 1tself has no evident
sense but determines all physical observables. This was studied and a two-dimensional analogy of the
universal asymptotic Echhaus criterion was found (Malomed-Tribel’sky). To illuminate the nature of
the problem and the style of results we shall restrict ourselves to the case of periodical perturbations
with fixed period lattice having regular hexagonal symmetry (really the lattice can vary and perturba-
tions can be unperiodic). We suppose additionally the existence of some energy functional ¥
minimized under Kinetics.

The hierarchy of symmetry groups containing the lattice translations and contained in the motion
group of the plane is presented in figure 3a. Stationary states are critical pownts of functional 7.
Stable states are local minima of #. ¥ is invariant under the whole group of motions of the plane.
But its critical points may belong to any symmetry type.

F may depend on parameters. Two of them - overcniticality € and gravitational asymmetry o — are
essential physically. Coexistence of stable states with given symmetry types is shown in figure Sb.
Such pictures on parameter space are called bifurcation diagrams. When parameters vary the state
of the system changes continuously or by jumps and the resulting state may depend on the initial
state and on the direction of the process (hysteresis). How it happens can be understood from
figure 5c where the diagram of catastrophes — the dependence of energy in stationary states on
parameters - 1s pictured.

A general method of catastrophe theory is to reduce any object — function, family etc. ~ to some
universally normal form. Where a physicist neglects higher terms, a mathematictan “kills” them by
transformation of variables. The remaining terms and parameters are essential and form the normal
forms. Its analysis leads to pictures similar to figure 5.

Indeed our normal form depends also on some third essential parameter and is unstable to 1ts
variations. But this instability is analytical and invariants of the pictures vary continuously. The
situatton docs not change qualitatively until the third parameter value crosses some critical point.
After the crossing figure 5b is replaced by 5d. This gives a theoretical prediction: one can observe
stable structures with triangular symmetry (Golubitsky 1983, Malomed - Tribel’sky — Givental’
1986).

For Rayleigh-Bénard convection the third parameter value never crosses the critical point, for
physical reasons, and the picture 5b works in accordance with experiments. It would be interesting
to find out where the triangular structures can appear and to observe them.
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STABILITY OF SOLITONS

Equation (2) is unstable when an additional time derivative 1s added to the left hand side: it changes
its character from dissipative to a conservative one. The resulting equation describes non-hnear elastic
waves in one-dimensional media with dispersion. It appears for example under continuous discrete
atom chain with pair potential of neighbours f and harmonic long-range imteraction. The unknown
u is a strain field. Under change v, = u the equation becomes a Hamiltonian system with kinetic
energy f(¥/2)dx and potential energy
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v} = [ A2 + flv)ldx (4)
The corresponding dynamical equation takes the form
V=~ [(vi)ex — fr(v.r)]x - (5)

Among solutions of (5) there are solitons of stram field. By definition a soliton is a running solitary
wave. From the statistical mechanics viewpoint solitons have a neghgible value among all solutions:
observable wave processes are “rarely solitary”. But their existence in the model shows that such proces-
ses should exist and were often used in phenomenological theories infinitely. (Even such notions as “a
solitary wave packet” appeared to overcome the contradiction with statistical mechanics. )

According to the general stability conception a soliton phenomenological theory is valid only if the
soliton solutions used are stable. In our case solitons depend on two parameters — strain value € at
infinity and soliton velocity ¢. Let us define “soliton square™

F(c?) = f (u — €)“dx.
The soliton is stable if and only if

F(c®) + 2c* F(c*) < 0.

dc?

In particular standing solitons are unstable. Analogous stability cnteria can be found for other classes
of dynamica} equations containing Korteveg-de-Vnes or Sine-Gordon equation with an arbitrary form of
non-linearity. But there are open questions. So a stability criterion is unknown for opposite sign before
the quadratic term in (4).

GEOMETRICAL OPTICS

The wave-particle duality shows itself in short wave theory as an equivalence of ray and front ap-
proaches in geometrical optics. According to the Huygens principle one may take any instant front
as the initial one and investigate a light propagation considering parallel fronts or the ray system
orthogonal to these fronts.

Let the initial front be a circle on the plane. Then the ray system has focus at the centre. This
situation is unstable: if the nitial front vanies then the focus vanishes. Instead the whole focal locus -
caustics — appears {(an aberration). It is shown in fipure 6a together with ray and front systems.

Geometry of diffraction on an obstacle leads to another example. If rays must not cross some curve
— boundary of the obstacle — then they move some time along the boundary and then leave 1t in a
tangent direction. Figure 6b shows rays and fronts near an wmflection point on the obstacle boundary.
Here the ray distance is a sum of boundary segment length and straight one. Fronts are shown together
with their “analytical continuation”. It means that ume on straight rays runs forward in positive direction
from tangency peint and backward in negative one.

Both pictures were already contained in the first course on Mathematical Analysis (I’Hospitale =< 1800)
but their nature was understood just recently. They are managed by regular polyhedra - by the tetrahed-
ron {Arnol'd, 1972) and the icosahedron (Scherbak, 1983) respectively.

Consider a surface in 3-space (figure 6c¢,d) formed by instant fronts lifted to different heights -
the graph of time function. The surfaces are the discriminant varieties of the polyhedra symmetry
groups. |

The symmetry group of the regular polyhedra acts in 3-space and is generated by reflections in its
symmetry planes. An orbit space of the action is 3-space again and the discriminant variety by definition
s the collection of nonregular orbits formed by the symmetry planes. For example the tetrahedron group
acts n 3-space by permutations of its vertices in the same way as permutations of roots of polynomials (6)

PHAS A B+ C=x - —x)x—0)x~x), H+X+xn+r=0 (6)
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act on the root space itself. So the tetrahedron discnminant coincides with the space of polynomials
(6) having multiple root (x; = x; for some |, j) in the (A, B, C) - space of all polynomials.

The discriminants are normal forms of time function graphs only. They coincide with the graphs
up to smooth exchange of vanables in surrounding space near the origin. So the catastrophe theory
method i1s applied here again.

A similar approach can be used anywhere the rays or fronts propagation meets (see for example
Armol’d — Zel'dovich — Shandarin’s works on large-scale structure of the Universe).

CATASTROPHE THEORY AND CONTACT GEOMETRY

[t seems the contact geometry first appeared in physical context in Gibbs’ “Graphical methods in
the thermodynamics of fluids” (1873), (The Scientific Papers, Vol. 1, (1906), pp. 1-32).

We consider the following quantities: v—volume, p—pressure, rt—temperature (absolute), e—
energy, m—entropy of given hquid in some state, and also W——work produced by liquid under a
transition from one state to another and H-—heat received by liquid under this. These quantities
satisfy relations expressed by the following differential equations: . .. de = dH-dW, dW = pdv,
dH = rdv. Ellminating dW and dH yields

de = tdm-pdv. (7)

The quantities v, p, f,- € and v are defined if some state of the hquud 15 given, so one should call
them functions of the state. The state of the liquid being understood in the fluid thermodynamics
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sense admits two independent variations so there exist three finite equations between five quantities .
v, p, ¢, € and m which are generally different for distinct substances but never contradict the differen-
tial equation (7).

In modern terms the S-dimensional phase space of thermodynamics carnes the contact structure
(7) and states of the given substance form a Legendrian surface in 1t.

Contact geometry is well adapted to a phenomenological description of phase transitions. So figure
7 completely describes the Landau phase transition theory near Van-der-Waals® critical point. The
projection of Legendrian surface into (€, m, v)-space gives the internal energy graph. If we want to
replace extensive variables v, m by intensive ones p, ¢ and to preserve the contact structure under
this then we automatically will come to Gibbs’ free energy G = € ~ tn + pv !

dG = ~ mdt + vdp.

Contact 5-space

|_egendrian G
A€ / surface !
e SpinQdaQl A
A - —-- Binodal (Maxwell) »
transition lines t
7 ) A
/ h '
/ m N ,r;
SRR i
Fipure 7.

The projection of the same Legendrian surface into (G, 1, p)-space is the free energy graph and can
be used as a catastrophe diagram for investigation of hysteresis phenomenon under phase transitions.

The appearance of the tetrahedron discriminant here is not just a chance. The point 15 that the
contact geometry is well adapted to description of geometrical optics also. Velocities of rays form
an n-dimensional Legendrian submanifold in (2n + 1)-space of all possible velocities p, spatial co-
ordinates ¢ and time vanable ¢ with contact structure

dt = pydgy + . . . + pudg. (8)

The time function being single-valued on the Lagrangian submanifold is multi-valued being considered
on g-space only. Its graph is a projection of the Legendnan submanifold into space-time.
Legendrian submanifolds appearing in geometrical optics are not always smooth as in figure 7.
They may have singularities as in the case of diffraction (figure 8) for example. The catastrophe
theory method of classification of stable time function graphs for Legendrian submanifolds with the
simplest singularities leads to a surprising result. If n-dimensional L.agrangian submanifolds are
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smooth or have singularities along (n — 1)-dimensional smooth ““edge” as in figure 8a (and look like
a singular plane curve in transversal direction) then the classification in question coincides with that
of symmetry groups of reguiar polyhedra in multidimensional spaces (Armol'd 1972, 1978; Scherbak
1983, 1988; Givental’ 1988). Graphs of corresponding time functions look like discriminants of these
symmetry groups!

Legendrian surface
In contact 5-space

Y
Time- space

|
>
(b) i

Figure 8.

SYMPLECTIC GEOMETRY AND STURM THEORY

The Hamiltonian method in conservative dynamics (of moving particles, rotating solids and so on)
begins from the Extremal Action Principle. One should consider an action functional

S:f[(P1dQ1+~--+PndQn)*H(Pr g, t) di]. (9)

The integration is carried out along a path ( p(f), ¢(f)) in generalized momenta-configurations phase
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space. Extremals of the action functional are motion trajectories in the phase space of the mechan-
ical system with Hamiltonian function H. They satisfy the Hamilton equations p = — f,, q = H,.
Let us introduce the symplectic structure in the phase space

dp, ANdg, + ... + dp, N\ dg,. (10)

This expression behaves like a scalar product but an anti-symmetric one and defines, by integra-
tion, the oriented area of a surface in the phase space. This means that the area may be positive
or negative and should be equal to zere for closed surfaces.

The first term in (9) can be understood geometrically as oriented area of a surface bounded
by the path. This leads to the following variational principle for autonomic Hamiltonian system.
[ts trajectories are extremals of the oriented area functional inside the class of paths situated at
the same level of the Hamiltonian function. This variational principle is a prototype of all ones
in mathematical physics. It allows us to consider Hamiltonian systems with phase spaces, more
complicated than coordinate ones: we need a symplectic structure and a Hamiltonian function
only. For example an ordinary sphere, provided with an area element, becomes the phase space
of the classical spin system and this statement acquires an exact sense in geometrical quantization
theory (see Kirillov).

Now we are going to explain how the instability theorems in diffusion kinetics should be proved.
Until the space is one-dimensional it should be considered mathematically as time. Thus stationary
dissipative states turn  into movements of some non-linear autonomic Hamiltonian
system!

An analogy with geometrical optics helps further. A particle, forced to remain at a cuorved
surface, moves along a geodesic - a locally shortest line on the surface. But geodesics starting
at a given point become non-minimal after the first focal point. For example meridians are
geodesics on a globe, and the South pole is focal to the North one (of course this situation is
unstable and on the geoid the focal point turns into focal locus — caustics — looking as in figure
9a). A pencil of neighbour geodesics is shown in figure 9b. By analogy a stationary dissipative
state has a non-mimimal energy (instead of geodesics’ length) because of its periodical character
(figure 9c).

Formally the problem can be reduced to determination of the number of negative cigenvalucs

of some non-autonomous linear Hamiltonian system. describing extremals of the functional {com-
pare with (4)):

b
f [A()E + B(OIE + C(Hut)dt (11)

If A=20 then (11) yields the Sturm-Liouville (or stationary Schrédinger) equation. Then the
nomber of zeroes of its solutions predicts the number of negative eigenvalues. This theory is well
known by the name “Sturm theory”. But it is not so well known that the same theory is valid
for functionals (11) containing second or even higher derivations. Namely let us consider the
space of functions on the interval [a, ] satisfying “‘the first boundary condition™

u=1u=10 (12)

and call a point @ <z< b a focal one if there exists a solution of the corresponding linear
Hamiltonian system, satisfying {12) at t.

Theorem. If A is positive then the number of negative squares of the functional (11) on our
space of functions is equal to the number of the focal points.

A similar result is valid in a rather more general situation: the functional mayv depend on higher
derivatives, may contain mixed terms and u may be a vector, so that A, B, C are symmeftric
matrices. The only need is that: the highest term A must be positive definite.

This generalized Sturm theory is also used in soliton stability results.

For an explanation of generalized Sturm theorems from the symplectic geometry viewpoint and
for references see Arnol’d, 1984.
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CARTAN FORMALISM AND FIELD THEQRY

If physical space in our kinetic equations is not one-dimensional then stationary states satisfy some field
equation in the space. Thus to apply space-time analogy one needs Hamiltonian theory “with multidimen-
sional time”. Such a theory does exist, and is called Hamilton-Cartan formalism and leads to equations

orad g = Hz, div P = — H,. (13)
The fomalism starts from action functional (for example — in 3-time)

§=[p/Ndg—~ Hp, ¢ 1) d,
P = pldfz A de; + P df3 /\ dII “+ p3df1 A\ dfg
dt = dy, ANdp, AN dts, g = q(ty, 6, B). (14)
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The integration is carried out over some time domain T. Extremals of (14) satisfy (13) in T.

This approach allows us to formulate some “conic” generalization of Sturm theory (figure 10a).

Considering ““the first boundary problem”™ for functions in the domain 7" we call a level 1, = ¢ focal
if our linear boundary problem has non-trivial solution in the domain a = ¢, = ¢. Then the number
of negative squares of the quadratic functional, whose extremals we are interested 1n, 15 equal to the
number of focal levels between a and b if our functional 1s positive definite in the highest derivatives
in other words - if our boundary problem is elliptic).

L
b
t
a
(a)
- N
a b t,
(b)
Figure 10.

In conclusion let us formulate two problems.

(i) Extend “Stwrm theory” to the topologically non-tnivial situation where the time domain T is replaced

by a manifold (ficure 10b) and the elliptic quadratic functional is defined on sections of a vector bundle.

(if) Our formulation of Hamilton-Cartan theory is local in “time” 7. Give a global one in which

both “time’ and “phase space” could be manifolds and exist separately.
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