WavVES and SymMMETRY
Raman Centenary Symposium,
December 1988, Bangalore.

The Mott Transition

T. V. RAMAKRISHNAN

Department of Physics,
Indian Institute of Science, Bangalore 560 012, India.

[. INTRODUCTION
A. Mottt Insularor and Band Insulator

The Mott transition! (or state localization by electron correlation) is a little more than half a century
old as a distinctly recognized phenomenon; it 1s still not understood in detail. The phenomenon 1s
now particularly relevant becausc of the recently discovered oxide superconductors. Strong correlation
effects are quite important in these systems, pcrhaps central to their electronic behaviour. 1 present
here a brief review and some tdeas.

At a conference in 1937 organized by Mott, de Boer and Verwey” reported that NiO is a
transparent insulator. This is rather unexpected, since according to the band theory of sohds
(developed in the late twenties) it ought to have been a half- filled band metal. The level scheme
for the Ni d electron s shown 1n figure 1. In the cubic crystal field of NiO, the 4 level splits into
b (three-fold degenerate orbitally) and ¢, (two-fold degenerate). The eight d electrons of Ni™™ fill
the #, band completely (six states per Ni*") and the ¢, band (four states per Ni" ™) partially. The
oxygen level derived band is completely occupied. Thus the substance ought to be, from this simple
electron count, a metal. Instead, it 15 a good msulator with an energy gap of about 3 eV.
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Figure 1. {2) Schematic illustration ol how the degen-
eracy of d levels is ldted in an octahedrally-symmetric
crystalline environment, and the resulting halt-filled
band (relevant for NiQ). (b) Further lifting of degeneracy
by two-sublattice magnetic ordering and formation of
a semiconducting gap.

At the above conference itself, Peierls suggested that the insulating nature of NiO could be due
to electron repulsion plus the Pauli exclusion principle discouraging configurations such as Ni™ and
Ni***. The argument is simply that electron transport from one Ni™™ site to another means that
the former becomes Ni* and the latter becomes Nit¥*™. If one of these or both have a much higher
energy than Ni*™, (because of extra coulomb energy and exclusion principle effects), electron

CURRENT SCIENCE, VOL. 59, NOS. 21 & 22, 25 NOVEMBER 1990 1125



T. V. RAMAKRISHNAN

transport will require activation energy and the substance 1s an 1nsulator. In the band model where
interaction between electrons is ignored, different 1onic configurations have, in effect, the same
energy. Thus the NiQO kind of insulator is solely due to correlation effects, and not due to crystal
periodicity, band gaps and electron count per umt cell. The idea and 1ts experimental consequences
were developed by Mott’ in a series of papers. reviews and books starting from 1937 (see also
Refs. 3 and 4 for recent reviews). We will briefly mention some of these in this paper.

An alternate explanation for the insulating behaviour of NiO was provided by Slater’ in 1951,
after it was discovered that NiQ is an antiferromagnet. The latter fact means that the (magnetic)
unit cell is double the size of the chemical formula unit cell. The new unit cell has enough electrons
to fully occupy the e,-like one-electron bands; the new periodic potential due to antiferromagnetism
splits the e, band (see Figure 1). If this is indeed the reason why NiO is an insulator, one expects
it to be metallic above the Néel temperature 7Tn when there 1s no long range magnetic order so
that the umit cell 18 indeed that corresponding to the chemical formula. In fact, it 15 not. More
quantitatively, one expects, according to the Slater picture, that the band gap £, due to antiferromagnet
order would be of order kgTn. It is actually forty times that! Thus the very existence of insulators
(Mott insulators) with magnetic ions but without long range magnetic order (paramagnets) means
that correlation effects are very important for such systems and that one-electron band theory does
not correctly describe the electronic states.

An interesting teature of these insulators 1s the following. Since each ion has a magnetic moment,
there are at each site, many degenerate states (say with different J; quantum numbers} only one
of which i1s occupied. Despite there being a large number of energetically degenerate unoccupied
states in the system, 1t requires a non-zero energy to transfer an electron from one site to another!
An obvious question is whether a given substance could make a transition to such an insuiating
state from an uncorrelated metallic state. This 1s the Mott transition, which we now descnbe.

B. Mo Transition

In 1949, Mott® described a simple hypothetical model, namely a lattice of hydrogen atoms which
can be expected to have a metal-insulator transition as a function of the lattice constant a. Clearly
when a » a (the Bohr radms), the system is best described as a collection of hydrogen atoms,
and 15 an 1nsulator with an activation energy U~12 eV which is the sum of the energy 7 required
to remove an electron from a hydrogen atom (ionization energy, I = 13-6 eV) and to add it to
another (electron affinity, A=—-1-6 eV). The activation or electron correlation energy U=I/+A.
However, for a < 4y, the electrons overlap strongly, an atomic description is not appropriate, and
the system 15 a half-filled band metai. Clearly, as the single parameter a (lattice constant) is increased
keeping the lattice structure unchanged, there is a metal to insulator transition as a increases to a
value of order ag. The two limits are described rather differently: For a <€ a4y, one is in the
molecular orbital or Bloch regime whereas for ¢ > g, one is in the Heitler London or atomic limit.

The obvious questions are:- Do such transitions occur? What are they like? As an experimental
fact, they do not occur for a lattice of hydrogen atoms, which is insulating because the atoms form
molecules (H;) and the period doubled molecular crystal is a band insulator. Thus such effects
could pre-empt the Mott transition. We now discuss a few candidate systems.

II. SOME CANDIDATES FOR THE MOTT TRANSITION

A. Phosphorus-Doped Silicon (Si:P)

The donor electrons of phosphorus form a hydrogen-like state, bound to the P nucleus. The effective
Bohr radis ap is ~ 30 A and the binding energy is ~ 0-03 ¢V. Thus a collection of phosphorus
atoms 1in silicon is like a collection of hydrogen atoms. Their density n can be increased by doping,
and indeed at n, ~ 3-7 x 10" P/em® there is an insulator-metal transition. (This corresponds to

n'* afy ~ 0-25, a dimensionless Mott criterion which works very well for a large number of metal

insulator transitions).

This much-studied transition’® is continuous. For example, the conductivity seems to go to zero
continuously with an exponent v equal to half (v = 1/2). The static dielectric ¢ constant
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diverges on approaching metallic limit, with an exponent close to 2v. The frequency and temperature-
dependent conductivities go o™ as T2 and respectively. As one approaches the insulating phase
from the metallic side, magnetic moments appear to form. For example, the magnetic susceptibility
x(T) 1s highly enhanced and strongly temperature-dependent; the spin fluctuations relax very slowly,
the relaxation rate going to zero as T', in strong contrast to the linearity in temperature expected
of a metal (Korringa relaxation rate). Recent NMR measurements show that even in the metallic
state, a certain fraction of the donor electrons is localized; they have magnetic moments. In the
insulating state, the low temperature magnetic susceptibility diverges as 7™ close to the critical
density. There 18 no long range (antiferromagnetic) order. All these observations point to the
localization of electrons (no diffusion of charge or spin density) at the metal-insulator transition.
The question is one of the operative mechanism. This is not settled as yet in spite of the wealth
of experimental information, though there are many suggestions.

Mott argued® that because of long range coulomb forces, the transition will be discontinuous,
from a state with no free carriers to a state with a non-zero density of them. In a lattice of
hydrogen atoms, if an electron is removed from one site and added to another, the attraction
between the proton left behind and the extra electron 18 coulombic; such a hole electron pair binds.
However, if there are a larce number of free carriers, the screened coulomb potential may be too
weak to bind the electron hele pair; the electron hole excitation costs no energy and the system
is metallic. Thus the carrier density is expected to increase discontinuously from zero (insulator) to
a non-zero value (metal). Experimentally, the effective free carrier density changes continuously.
In the absence of a detailed theory, it 1s not clear what 15 wrong with the argument.

A feature of the St:P system which makes it different from a lattice of hydrogenic atoms is that
it 15 not a periodic lattice, since the dopant phosphorus ions {protons of the hydrogenic atoms) go
randomly into Si sites. Thus the system is intrinsically disordered. Electronic states in such a system
can be localized if the randomness is large enough (Anderson localization)™!.

A system with Anderson-localized states at or near the Fermi energy is an insulator, irrespective
of the average number of electrons per site (the Mott insulator requires one electron per site for
an orbitally nondegenerate system; in general a commensurate number of electrons per site is
needed). A perturbative scaling theory of the disordered electron gas has been developed by
Finkelshtein", Lee, Kotliar and others'” and the metal insulator transition in Si:P discussed in this
light, with partial success. The perturbative theory neglects electronic commensuration effects. These
are experimentally important. The conductivity exponent for the transition in Si:(P,B) [where the
number of carriers (np—np) is less than the number of sites mp+npgl is close to unity rather the
value half for Si:P. Also, the insulating state in Si:P has a measured gap against charge excitations,
whereas this question is not addressed in the perturbative theory.

In brief, the Si:P system is a candidate for a correlation-driven metal insulator transition in a
disordered system. The effects of correlation and disorder reinforce each other in ways, whose
details are not vet clear.

B. V,-, (Cr, Al), Of

This is another system extensively studied in the seventies because of the metal insulator transition
in it. In the composition (x) temperature (T) plane the phase diagram is shown in figure 2"
There is a metallic phase M (with indications of spin density wave ordering in some regions of it),
an antiferromagnetically ordered insulating phase AFI, and a paramagnetic insulating phase PI. The
M-PI transition ends in a critical point, all other transitions being discontinuous. There 1s a structural
change accompanying the metal-insulator transition. Because of this structural change and the effects
of disorder (again unavoidable since substituents replace vanadium randomly), this system is not a
perfect candidate for the Mott transition, though the general phase diagram is close to what 1s
expected if increasing correlation is identified with increasing x (the Cr ioms, being larger exert
negative pressure). The discontinuous structural change could mean that electron lattice mteractions
are important in these systems. In the metallic phase, close to the transition, there are many
indications of strong correlation effects (large T * term in resistivity, large enhancement of susceptibility
and electronic specific heat). [Spalek'* and co-workers have developed a theory of this metal insulator
transition using approximate theories of correlated electrons.]
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Figure 2. Metal-insulator transition in V,_, (Cr, Ti), O;
where the amounts of Cr and Ti arc as shown. The
difference 1n sizes of Cr, Ti and V can be thought of
as producing local {chemical) pressure, Cr s larger and
exerts negative pressure while the smaller Ti exerts
positive pressure. An equivalent pressure scaie 1s shown
on the x axis below. The phase diagram is shown in the
temperature ‘pressure’ plane, temperature bemng 10 degrees
Kelvin. Paramagnetic insulator {PI}, metal (M) and an-
tiferromagnetic insulator (AFL) phases are shown.

C. He’

A rather different but cleaner system is He®. Low temperature liquid He’ is a pure Fermi system with
strong, short range correlations between He® atoms. He® states are extended. In the solid phase, the
fermion states are localized. Thus the liquid-solid transition can be considered (in this quantum Fermi
system) to be analogous to the Mott metal-insulator transition. This system is free from paossible
complications due to ‘frozen’ disorder, electron lattice interactions and long range coulomb forces. It
is however not a lattice system; the extended state regime is a liquid. But the liquid could be thought
of as a cellular structure with a finite concentration of mobile atoms and no long range cellular order.
Experimentally, the activation energy for He® migration in solid He® decreases to nearly zero as the
fluid phase is approached”. Solid He® has a number of other unusual features®®, e.g. a specific heat
linear in temperature at low temperatures. This is unknown in other crystalline insulating solids, where
a 7° dependence is obtained. The solid is extremely soft with respect to shear and has an unusual
kind of magnetic ordering which requires long-range interactions. He® is well described as a nearly
localized Fermi liquid". The liquid solid or ‘Mott’ transition in He’ is first order. But this could be
because lLiquid-solid transitions are generically discontinuous.

D. I.,Elg Cu 04 elc.

No Mott transition has been yet seen in this system, but La, Cu O, is an antiferromagnetic insulator
with a Néel temperature of about 220K. It ought to have a partly filled band according to band theory
and hence should have been a metal. It is therefore quite likely that the insulating antiferromagnetic
state is due to correlation, i.e. that La, Cu Q, is a Mott insulator®. La,_, Sr, Cu Oy is then thought
of as a Mott insulator with x holes per formula umit, i.e. a highly correlated system which is metallic
because of a density of mobile holes. Thus understanding high temperature superconductivity probably
requires that the Mott transition and the nature of the doped Mott insulator be elucidated.

It 1s almost certain, however, that in both NiO and La, Cu O, the lowest excitation energy
involves transfer of a hole from the filled oxygen band to the Ni** or Cu™™ ion. This d-p charge
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transfer energy is smaller than the energy difference U between Ni""-Ni""" or Cu™ —-Cu™™~
configurations. Are such charge transfer (d and p bands) insulators (which also require strong onsite
d-d correlation for their existence) qualitatively different from one band (e.g. 4 band) Mott insulators?
This 1s a problem of active interest for obvious reasons.

The above bref survey indicates that in experimental systems, the basic correlation-induced
localization transition can be modified by effects due to long range interactions, electron lattice
couphing, disorder, liquid-solid transiticn, electronic incommensuration, and low dimensionality. It
15 therefore important to first understand in detail the nature of the Mott transition and then to
evaluate the effect of relevant perturbations such as those discussed. A simple model which can
describe both strongly and weakly correlated systems as a parameter is varied and was first discussed
in detail by Hubbard”® nearly twentyfive years ago. This will concern us now.

III. HUBBARD MODEL

The Hubbard model describes electrons on a lattice, at sites i. The energy of an electron is €. If
two electrons (of opposite spin) are on the same site, their total energy is (2¢ + U). U is thus a
measure of repulsion between electrons. Electrons hop from a site i to a site j with an amplitude
f Since hopping 18 due to overlap of wave functions, 1t 18 short-ranged and can be assumed to
connect only the nearest neighbours ;j of a site i. The Hamiltonian can be wriiten in terms of
quantized field or creation and annihilation operators @, a* as follows:-

H=Z(E""il)ﬂh?crﬂm‘f'zfujﬂ?aﬂja +UZ”51 iy (1)
The model has three dimensionless parameters, namely the following:—

(i) correlation energy U in units of the kinetic energy or bandwidth zt. ie. u = (U/zi),
(ii} electron density I/N < 3;, n, > = r Or average number of electrons per site,
(111) thermal energy (kpT/zt) = 0.

Two dimensionless parameters, namely u and & (reduced correlation and reduced temperature)
describe the half-filled case n = 1 which is the only density with the possibility of an insulating
phase. The phase diagram in the space of these two variables is not known in detail, except for
one dimension where for all « and 8 = 0 one has an insulator. The limts « <€ 1 and w® 1 are
understood, but uncertainties are greatest for u ~ 1, the region of most interest for the Mott
transition. The phases possibly depend on the dimensionality and on the lathce type as well. We
describe below one-model system, and comment on other possibilities highlighting the uncertainties.
We then discuss an approach which could provide detailed answers.

Consider a simple cubic lattice with nearest neighbour hopping only, and with one electron per
site. The ground state is always antiferromagnetically-ordered and insulating. On increasing the
temperature, there is a continuous transition from this ground state to a Pauli paramagnetic metallic
state at small « and to a paramagnetic (local moment) insulator for large u (see figure 3). The
small w system is a Slater insulator below the spin density wave temperature Tgpw and 2 metal
above. The insulating state, or the gap against charge excitations is due to SDW order, disappearing
with it. For large u, on the other hand, one has a Mott insulator: there is a gap against charge
excitations in the paramagnetic phase, above the antiferromagnetic or Néel ordering temperature
Ty. Thus, in the 8, u plane, above the magnetic ordering temperature there is a change from Pauli
paramagnetic metal to paramagnetic insulator as u increases. This change 1s shown schematically
by a dotted line in figure 3 and is the Mott transition. Is 1t a sharp transition, or a smooth Crossover
because of finite temperature effects? The basic point 1s that the condition for a charge gap to
appear becomes different from that for antiferromagnetic order, somewhere in the region z, 8 ~ 1.
How does this charge spin separation happen? What is the nature of charge and spin fluctuations
in this regime? These questions are difficult to answer precisely because the Mott transition 1s
between two qualitatively different regimes. We expand on this now.

In the small u regime, the antiferromagnetic order is due to a Fermi surface instability. The
free-electron Fermi surface (for the nearest-neighbour hopping, exactly half-filled case) is the surface
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Figure 3. Schematic phase diagram of the half-filled Hubbard
model in the reduced temperature (8) and correlation («) plane.
The paramagnetic metal, paramagnetic insulator, and antifer-
romagnetic insulator regions are indicated. The shaded region is
one of maximum uwncertainty. Conjectured local moment formation
boundary (dashed line) and the Mott transition line (dash-dotted
line) are indicated.

of a cube and so consists of planes. The interaction u causes singular scattering of electrons from
states near one planar segment to another parallel segment displaced by a wave vector Q (|Q| = (w/a)
where « i1s the lattice constant). The spin susceptibility x(Q) is logarithmically divergent at T = 0,
and the ground state is a spin density wave with a commensurate wave vector Q. The transition
temperature Bspw 1S exponentially small i.e. Bgpw ~ exp(—1/u). The gap in the electron excitation
spectrum, or the charge gap, 1s due to the SDW order and consequent new periodicity mm the
potential. The correlation is a singular perturbation on the mobile delocalized electrons.

For large u, the electrons are localized, one at each site and the hopping can be treated by
perturbation theory. The most important effect, involving virtual charge fluctuations and of second
order in &, is an antiferromagnetic nearest-neighbour spin coupling J; = (¢%;/(U). The antiferromagnetic
Néel order thus occurs at a temperature Ty ~ [(J;;)/kp]. The gap for charge excitations, known as
the Mott-Hubbard gap, is of the order U » kzTy.

We notice that while the antiferromagnetic ordering is always to a two-sublattice arrangement,
the transition temperature is not a monotonic function of u. There is no comprehensive theory
which includes both limits. For example, if the weak correlation approach were extended to large
u, Tspw would appear to increase monotonically with 1 and to saturate at a value 8 ~ 1 for u » .
Clearly, this cannot be taken seriously since u cannot be treated perturbatively when large. On the
other hand, 1f the correlation dominated or large u picture is used, hopping is treated as a
perturbation and this would suggest that Ty increases as (1/u) increases, or as u decreases. The
basic localized electron picture is expected to break down, though, for u < 1.

The change from SDW order to Néel order at low temperatures with increasing u, is of course
a reflection of the Mott metal-insulator transition occurring at a higher temperature. If this T += 0
transition is continuous i.e. the Mott-Hubbard gap evolves continuously it may not show up as a
sharp change in electrical conductivity since at any non-zero temperature, the insunlating state also
has an activated non-zero conductivity. Like any continuous metal-insulator transition (e.g. Anderson
localization), the Mott transition will then probably show up most clearly if it occurs at 7= 0. For
this to happen, the low temperature magnetic ordering should be circumvented. This can be done
in model systems by a choice of lattice or of suitable further neighbour hopping. Another possibiltty
- 'hat the system is random {e.g. Si:P). In this case again, antiferromagnetic long-range order 1s

“~ere may be a continuous zero temperature conductivity and excitation gap transition
critical u. However, the transition could be strongly affected in character by disorder,

to localize electrons. The extent to which the T = 0 fixed point affects observed

" is an obvious question of interest. Another possibility is that the Mott transition

her in the short-range correlation model described above or in real systems
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because of other factors such as electron lattice coupling (V,0; ?), coulomb interaction effects, or
solidification (He® 7). Such a discontinuous transition line may terminate in a critical point somewhere
in the («, 8) plane (doped V,0; 7).

In the absence of a reliable detailed theory, the region of the Hubbard model phase diagram,
shown shaded (figure 3) is not well-charted; some possibilities have been indicated above. We
conclude by briefly mentioning earlier theoretical work, and our ideas.

{V. THEORIES OF THE HUBBARD MODEL

Earlier attempts at understanding the Hubbard model have been reviewed by many authors (Ref. 3
1S one such). We shall consider here two sets of ideas, one based on correlated wave functions
due to Gutzwiller, and the other on local moment formation and the ‘alloy analogy’.

The effect of onsite repulsion U is to energetically disfavour states with double occupancy (; and |
spin states both occupied) at any given site. A wavefunction incorporating this effect is
) = {II; [1 - gnirny )} o) where [y is a suitable independent fermion or ‘Hartree Fock’ many
body wavefunction. For g = 0, one has no correlation, and for g = 1, no double occupancy. One
can calculate g as a function of u by minimizing the energy. This cannot be done exactly, bul an
approximate estimate for the simple cubic lattice gives uy = 4. For u>u; one has a Mott insulating
state since each site has exactly one electron, and for u<u; a metallic state since the ground state
has charge fluctuations (which need double occupancy). One is thus tempted to think of g, or
double occupancy, as a kind of order parameter for a continuous msulator-metal transitton since
the latter continuously evolves from zero as u decreases [rom uy This cannot be quite true {or,
from simple large u perturbation theory the average number of doubly-occupied sites i1s a fraction
of order (I/u)*. In a metal, the doubly-occupied sites and holes are free, whereas in the insulator
they are bound so that charge fluctuations have a gap. The Gutzwiller description, while qualitatively
correct for the strongly correlated metal close to the Mott transition (u < uy) has an infinite
Mott-Hubbard gap in the insulating phase, even close to s The Gutzwiller projection 1s a very
direct and useful procedure however for constructing approximate wavefunctions for strongly-correlated
lattice Fermi systems, especially if |y is chosen to reflect other correlations present in them.

The much older approach based on local moment formation and the ‘alloy’ analogy"”*"*' proceeds
as follows:~ As u increases each site 1s singly occupied with increasing probability, and thus a tocal
magnetic moment appears there bevond critical value u, (see figure 3 for a schematic diagram).
This condition can be formulated as the divergence of the on-site spin or magnetic susceptibility
Y;i As u increases further, the average local moment at each site becomes larger. Assuming that
the size of the moment and just two directions (up and down) characterize tt, 1.e. assuming an
Ising magnetic moment, the systemn can be thought of as a two-component ‘alloy’. The up and
down pointing moments are the two constituents. The density of single-particle states for such a
binary alloy can be approximately calculated, e.g. in a single site approximation such as the CPA.
When the magnitude of the local moment exceeds a certain value uy (see figure 3 for a schematic
indication) there is a gap in the density of states, l.e. in the spectrum of single particle excitations.
The Mott-Hubbard gap grows to a value of order (/ as u increases. The interaction between
magnetic moments at neighbouring sites can also be obtained approximately. A phase diagram
similar to that of figure 3 but with details in the shaded region based on rather arbitrary approximations
and assumptions has been obtained, for example, by Economou and co-workers™.

In the ‘alloy’ analogy, one clearly breaks rotational invariance at each site. One replaces moments
fluctuating mn direction and in time by static moments oriented up or down and thus approximates
a translationally-invariant system by an alloy. The analogy however emphasizes the single-site nature
of the Mott-Hubbard gap and is the.only approximation to provide a reasonable description of it,
We now describe a reformulation and development of these 1deas in a language which seems more
promising. One way of considering the moment problem 15 to describe the free energy of the
Hubbard model in terms of a vector moment m; (1) at each site I; in general m; depends on time
r also. The free energy functional Fim; (7)} can be approximately calculated using a Hubbard-
Stratonovich transformation. It has, e.g. for the static functional Flmyz, = 0)} = F{m} a part F,
which depends only on the magnitude of m;’s, i.e. on [my* and another F, which depends on the
angle between them, e.g. on (m;-my). If F, has a minimum for non-zero |m|* one has local
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moments. Their interaction, as described by F, determines the long-range 'I?]l?gnmmtli: L:;Tlgk:ltil i::::
temperatures. The one-glectron densitydmf st_ates -fﬂl‘ l_sirg: ;rie];zlllcﬁfl;z;eﬂ;;u;;; only f.r o e

t and not om its direction, L.e. It 1 gL
zint-z;{io;iii ?;De?;:cted to develop a gap for a larg§: enough u. ?f the effcct of lnmn-;cntsntz_ ldliii!;
(without long range order) and of temporal fluctuations can be included and sbmr*nT?tt o “”:-m&
this Mort-Hubbard gap. one has a complete theory for the strongly correlated regime. | ¢ tlm L. I-‘tin 1
of the density of states gap is the Mott transition. As discussed by several ﬂllf[hOI‘h, U“i FsL ;} .5.1,
phase has 2 local rauge invariance. This mmportant property as wel} as the entire sccni_lr:rm n_u‘t nu,’a‘
are best discussed using a particle hole transformation first considered by Kemeny™, which we

deveiop below.

The up-spin electron is considered one species of fermion (say 1) and ‘Tc dmn:fn-srun Ihult.ﬂt.x
. "’ - + — T " e . " L] . '
considered another species of fermion. Thus one writes ajy = a7 and a7 = a;2 so thut

Hubbard-Hamiltonian can be written as

e

H = ? I.,j- (ﬂ?l aj; — H?E Hﬁ} — Uiﬂjlﬂfz + (U!’z"u) S‘”H"";ﬂf:) . {j}

i i i {

'

The two fermions thus attract each other locally, with a strength U. Further, in the half-filled
case. one has {n;) = {nz). This clearly means from equation (2) that the corresponding ‘magneti
field” (72 - p) = 0. or that p = U/2. Deviation from half-filling is described by the chemical
potenttal i moving away from (U/2).

Because of the local attraction between Fermions 1 and 2 a 12-pair is possible. This pairing
s just a local moment formation. The local-order parameter (a7, a3;) corresponds to a moment
in the transverse direction (the operator aj; a¥; is the same as §%). The triad of parameters (a i, ab,).
(@ @) and (ni; ny ~ 1) are the components ST, §7 and $% of the vector S; or m,. Starting, {rom
the Hamiltonian equation (2) one can find free energy as a functional of {m;}.

A few low-order terms in a polynomial expansion for F{m;} are shown in figure 4. They can
be unambiguously divided into terms that are independent of the relative phase angle of the moments
at rand j and those that depend on it. The second-order term F%is long-ranged in space and its Fourier
transtorm coefficient x*(Q) has a logarithmic singularity for |Q) = m/a at T = 0. This indicates an
SDW instability. without local moment formation. As u increases, the single site or local terms are
more important since u is site local. This has several consequences. For example, the free cnergy
menimum is for 'm; # 0 (figure 5). Further, in the term F%; as u increases, all local processes
occurring at sites / and j must be summed over first, and the effective nteraction energy couples
rmoment vertices {8F'/m} and {BF'8m}. (see figure 6). These are proportional to m, and m,

> 2 Q )
.2 £.P (2)
Y N T
N2 7 i\ 7
o l N F
1
' | 1 v \
4 ¢ ‘\. et
e PN | N
~ 114 A / {4 N
rlj Frj
-
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Figure 4. Some low-order diagrams for the free energy
as 2 funct
F' do pujagfpeﬂrfdm;lﬁ? :;Eeﬂ;; " iocal temms Flgure 5. Local part of the free energy as a function
b I £60 moments m; - 2 :
and m, whereas the terms £F do, - of the size m} of the local moment, for two cases,

namely I/ =0 and U, (schematic),
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Figure 6. Effective coupling between moments at sites |
and ;.

respectively. Thus the effective interaction erergy has the Heisenberg form m; m;J; where J; can be
calculated from the renormalized propagators Gy G; and the vertices to be (1}/U) for large u. Thus
one can see how, with increasing u, magnetic interactions change from long-range, small, magnetic
fluctuations m the electron gas to short-range coupling between well defined, large, local moments.
As u ncreases, the one-electron propagator also 15 dominated by single-site processes. The strong
on-site potential due to a local moment binds the electron; the process i1s schematically shown in figure
7. A consistent approximation for the electron self-energy due to these processes i1s to consider the
diagrams for F' ({m}) and functionally differentiate this with respect to the Jocal electron number
operatora+, a;,. This binding is the Mott-Hubbard gap which increases from zero as u grows beyond i, ) u..

Figure 7. Interaction between an electron and the local
moment af site i.

The diagrammatic summations indicated above can be carried out systematically in a (1/z) expansion,
as will be shown in a future publication”. We have outlined here how such a programme makes
explicit the sequence of approximations involved, and the dominance of local correlations as u increases.

One can thus develop a fairly detailed and explicit picture of local moment formation due to
correlations, and the formation of a Mott-Hubbard gap (as a bound state) when the moments are
large. Both of these are single site effects and have to be described properly first when u 1s large.
The residual intersite effects depending on the angle between moments m; and m; are relatively
small perturbations for large u. Away from half-filling, the number of 1 and 2 fermions is not the
same, and there are always some unpaired fermions, i.e. sites without moments. The system thus
consists of moving, fluctuating moments and holes. A detailed theory of this regime is clearly of
great possible interest for doped oxide metals and superconductors.
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V. CONCLUSION

We have attempted here to describe qualitatively the Mott transition and a few systems where this
might occur. Experimentally, most candidate systems are not clean realizations of the proposed
continuous transition. This could be because the continuous transition is masked by relevant
perturbations such as disorder electron lattice coupling, coulomb nteractions etc. Therefore the
simplest short-range correlation model lkely to show a continuous Mott transition, namely the
Hubbard model needs to be understood in the transttion region and eftects of various perturbations
need to be analysed. We do not have such an understanding yet; some attempts have been described.
It is argued that a many-body approach focusing on the development of local moments and ‘bound’
states due to them, has the potential to provide a detailed description of the metal-insulator transition
and related systems such as the strongly correlated metal.

Note added in proof: Between the Raman Centenary Symposium in December 1988 the publication
of its proceedings, there have been many significant advances in our understanding of correlated
electronic systems and of the Mott transition. In particular, H. R. Krishnamurthy and coworkers
have developed [Phys. Rev. Lett. 64, 950 (1990)] a bosonic mean field theory for the T =
Mott-Hubbard transitioni in a trtangular two-dimensional iattice, and have pointed out that inclusion
of fluctuation effects is likely to describe the entire phase diagram shown in Figure 2 of this paper.
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