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1. INTRODUCTION

A superstitious person might say that my giving this lecture was predestined. Although I never met
Raman, whom we are honouring at this meeting, my whole career in physics has centred on his
themes of waves and symmetry. As an ignorant youngster my first piece of independent research
was on the diffraction of light by ultrasound in a liquid: the light waves were influenced by the
symmetry of the periodic environment provided by the wave of ultrasound. My supervisor told me
to read a paper about the theory of the phenomenon. It was writien by two people I had never
heard of — C. V. Raman and N. §. Nath ~ from an exotic place — Bangalore — and published in
an obscure journal — Proceedings of the Indian Academy of Sciences. It was so difficuit to understand;
this was not mathematics as I had learned it at school, progressing in logical steps: it was physicists’
mathematics — the kind 1 do now - where the argument took great leaps, supported by intuitions
- mostly geometric — which I did not share.

To celebrate the occasion I have chosen not to speak about my latest researches — although these
are alwavs one’s favourite children — but to describe some earlier work m the science of hght, that
15 optics, because that was what Raman studied all his life. I hope he would have liked this lecture,
because much of it deals with light as it can be seen with the bare eyes — in nature or with the
simplest apparatus — and that was his style too.

Qur branch of optics is the focusing of light as it occurs in nature. It has the wunusual feature
that its modern development (over the last fifteen years or so) was almost entirely driven by a
discovery in mathematics, in geometry to be precise. This is the so-called catastrophe theory of
René Thom and Vladimir Arnold. The emphasis on mathematics 1s something Raman might not
have liked. I suspect he had a healthy distrust of theorists like me, believing us to be too easily
bemused by mathematics. But in what I'll describe here mathematics really has proved its value,
opening doors to previously unexplored corners of a very old subject, leading us to discover many
new things.

2. STABLE FOCUSING

As a way to introduce the exotic mathematics in a non-technical way, we begin with something
familiar: the reflection of sunlight on wavy water (figure 1). Each brilliant point of the sparkling
image comes from a place where the water surface has the right slope to retlect light into the eye
(figure 2a). In mathematical language, rays of light define a map between the surface and the eye,
and this map is many-valued. The paths that are rays are those where the angles of mcidence and
reflection are the same. Another way to say this is through Fermat’s principle: in a graph (figure
2b) on which the travel time of paths from the sun to the eye 1s plotted against the place where
the path hits the surface, rays are the critical points, that is places where the graph has zero slope.
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Catastrophe theory deals with the critical points of maps, so with rays we are in the right mathematical
world to apply it.

Now let time pass. Because the water surface changes, the brilliant points move about. They can
collide and annihilate, or (the reverse) be born in pairs. ft is the rapid repetition of such events —
called “twinkles” - that gives the image its sparkling appearance. Mathematically, a twinkle is a
coalescence ot critical points, and it 1s precisely such coalescences that catastrope theory is about. The
physical situation at a twinkle is that the water surface has not only the right slope to reflect light
Into the eve but also the right curvature to focus it there. Therefore catastrophe theory is about focusing.

To see this more clearly, 1t helps to think of the pattern of rays at a fixed time (figure 3), rather
than the rays through a given point (the eye) at different times. Space is partitioned into regions
illuminated by different numbers of rays (e.g. A and B in figure 3). The boundaries of these
regions are surfaces on which focusing occurs; in two dimensions (as in figure 3) the boundaries
are 1ocal curves. These generalized focal surfaces and curves are called caustics {from the Greek
word for burning, referring to the focusing patterns behind magnifving glasses in the sun).
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Figure 3. Figure 5.

Across a caustic, both the light intensity and the number of rays change discontinuousty. The
simplest caustic is shown in figure 4. Because energy travels along rays, 1t 1s clear that the light
intensity is largest in caustics: caustics are bright places, dominating optical images. Caustics are
mathematical catastrophes. (The dramatic terminology 1s more appropriate for another application
of the mathematics, to the discontinuous collapse of elastic structures — e.g. bridges -- when the

loads are continuously increased.)
What catastrophe theory provides is a classification - a catalogue — of stable caustics. The innocent

word ‘stable’ denotes an important concept. It means that the caustics to be considered are those
whose form changes smoothly under a small change of circumstances. The point focus through
which all rays pass (figure 5), although familiar from elementary optics, is unstable — all the artistry
of the lensmaker is needed to produce it, and it explodes into ‘aberrations’ upon the slightest
alteration of object position. lens orientation, etc.
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3. THE CATALQGUE QF CAUSTICS

Caustics are classified by their codimension, that is the number of dimensions that must be explored
to find them. Thus a point on a line, a curve in the plane, and a surface in space (figure 6) all
have codimension one. This simplest catastrophe — called the fold — has an unimpressively simple
geometry, but describes an impressive natural phenomenon, namely the rambow.

codimension 1: fold catastrophe

-—
/pcuint on a line T

codimension 2: cusp catastrophe

line on a surface

surface in space

Figure 6. Figure 7.

As trancas Bacon wrote, ““The rainbow i1s made in the sky out of a dripping cloud”. Sunrays
stike a raindrop and emerge after two refractions and one (internal) reflection. A graph of the
direction of emergence against the latifude of incidence (first plotted by Descartes in 1638) reveals
a curve with a minimum - a folded curve, hence the name. Thus in some directions two rays
emerge, and in others none. The boundary is an angular caustic (at about 138° to the forward
direction): the light emerging from each drop is particularly bnight on a cone, and we see, brightly
lit, ali those drops on whose cones our eyes lie. These drops themselves lie on a cone with our
eyes at the vertex, so that we see it as a circular caustic in ‘skyspace’,

Next on the list is a catastrophe with codimension two: the cusp. A cusp (figure 7) is a point
in the plane or a line in space, at which two folds (curves or surfaces) meet and touch. The fact
that this is the only such catastrophe is a powerful result of the mathematics, telling us for example
that certain other caustics are unstable — in the plane, for example, a fold line coming to an end,
or an isolated focal point, or two fold lines meeting at a finite-angled corner.

Cusped caustics are easy to see, especially for those who wear glasses. Raindrops form ‘lenses
on the lenses’, and because the glass is usually not perfectly clean the droplet lenses are irregular.
Their foci (figure 8), forming stable caustic curves (rather than points) on the retina, can be seen
by looking through such rained-on glasses at point sources (e.g. street lights) at night. In the
laboratory the cusps can be produced very easily (figure 9) by a broadened laser beam refracted
through a water droplet sprinkled on a dusty glass plate and then onto a distant screen.
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Figure 8.

Codimension-three catastrophes are points in space; there are three of them. In the swallowrail
(figure 10), two cusped curves meet at the singular point. On a screen the swallowtail can be
identified by its characteristic section, which is a self-crossing curve with two cusps. Swallowtails
are often seen in water-droplet caustics (figure 11). It is hard to see the full three-dimensional
swallowtail. One (not very effective} technique i1s to blow smoke mto the focus and view the caustic
surface by diffuse scattering. Another (better) is to synthesize the surface by moving the screen.

In the elliptic umbilic (figure 12) three cusp lines touch. The characteristic section of this catastrophe
is a three-cusped ‘triangle’. This can be seen (figure 13) in a laser beam refracted through irregular
bathroom-window glass (the best glass has smooth irregularities about a millimetre across). A screen
through the singular point would show an isolated focal point, which as ailready explained is not
a codimension-two catastrophe and so is unstable. Now we can demonstrate the instability simply
by moving the screen: instantly the focus explodes into a ‘triangle’ containing cusps, which are stable.

In the hyperbolic umbilic (figure 14) a smooth outer surface intersects a cusped inner surface.
The characteristic section is a cusped curve within a smooth curve. Three of these can be seen on
the bathroom-window caustic of figure 13, at each of the ‘triangle’ corners. A screen through the
singular point would show a curve with a corner, which like an isolated focus is unstable. Again
the instability can be demonstrated by moving the screen: the corner explodes into the stable
‘cusped-curve-within-a-smooth-curve’.

The classification of catastrophes continues far beyond codimension three. Ever more complicated
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codimension 3: hyperbolic
umhilic catastrophe

Figure 14.

forms proliferate, each containing lower catastrophes as structural elements. The catalogue has not
yet been completed,

This sort of optics has the flavour of botany rather than physics. Mathematics tells us that stable
caustics can have only certain geometries, and we search the jungle of images trying to find these
‘exotic species’. And what different ‘specimens’ of a given catastrophe (such as the several hyperbolic
umbilic caustics in figure 14) have in common is not the geometric identity of crystals or Ford cars
but the topological similarity of two roses.

It is not fanciful to regard the optical catastrophes as ‘atoms of form’, playing a role in the
physics of light that is closely analogous to that of real atoms in the physics of matter. The atoms

occupy an intermediate regime — a mesoscale — between optics on the micro- and macro-scales, as
summarized in the following table.

L

OPTICS MATTER
Many connected catastrophes - MACROSCALE | Many atoms linked together -
caustic networks molecules, polymers, solids
Catastrophes MESOSCALE atoms

- i
Wave (interference) patterns, MICROSCAILE | subatomic structure — electrons,
decorating caustics with fine detail nuclei, quarks

4. INTO THE MICROSCALE: INTERFERENCE CATASTROPHES
Although catastrophe theory 1s modern geometry, the physics to which I have been applying it 18

long superseded. For nearly two centuries we have known that the description of light in terms of
rays (‘geometriczl optics’) 1S an approximation to a much better theory, in which light is regarded
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as waves. The ray approximation 1s good on large scales (for example in the design of some optical
instruments) but fails to reproduce the wave interference phenomena that occur when waves cross.
Such interference - clearly visible on some of the images already presented — constitutes the optical
microworld, the ‘subatomic’ level.

It might seem that on the deeper level of wave physics, catastrophe theory might be superseded
ike the geometrical optics it describes. But this 1s not the case. It turns out, remarkably, that each
variety of stable caustic — each catastrophe — is decorated on fine scales with its own pattern of
wave interference. Moreover, the catastrophe mathematics gives precise and detalded descriptions
of the intricate intensity variations across the patterns. These descriptions are themselves short-wave
approximations, but very refined ones.

First in the hierarchy is interference associated with a fold catastrophe. This pattern, together
with the theoretical intensity graph, is shown in figure 15. This mathematics was discovered in 1838
— long before catastrophe theory — by Airy, who of course was not aware that he was describing

the first pattern in a hierarchy.

0§25

02

0.1“1

0.1

-10 -8 -6 -4 : -2

Figure 13,

CURRENT SCIENCE, VOL. 59, NOS. 21 & 22, 25 NOVEMBER 1990 1183



MICHALEL BERRY

Next is interference associated with a cusp. This caustic requires at [east two dimensions for
its displav. and so its wave pattern is best displayed as an intensity map In the plane (figure
16a). Magnification {figure 16b) reveals a mass of minute detail in which the onginal geometrical
cusp can barely be discerned, yet cven the finest scales are reproduced in the theoretical contour
map (figure 16¢). The mathematics of this pattern was discovered in 1946 - again before
catastrophe theory — by Pearcey, who also was not aware that his pattern was the second member
of a hierarchy.

The three interference catastrophes of codimension three are patterns in space, which can be
illustrated section bv section on a screen. [ show here onc section from each of the elliptic
(figure 17} and hyperbolic (figure 18) umbilics (generated by water-droplet lenses) together with
computer simulations of the theoretical predictions. Obviously the agreement 1 very goaod.

Catastrophe theory’s penetration into wave physics goes deeper than providing a scrics of
intricate patterns. It also gives precise quantitative descriptions of two phenomena associated
with the short-wave himit: as the wavelength gets smaller (in relation to the size of refracting
and reflecting objects) the intensity on a caustic gets larger and the scale of interference detail
gets smailer.

Figure 16.
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I'ipore 17,

5. UP TO THE MACROSCALFE: CAUSTIC NETWORKS

The most familiar examples of caustics with many connected catastrophes are the networks formed by
sunlight focused by the wavy water swrface on the bottom of a swimming pool (figure 19a and b, page
1191). Usually these networks are very complicated and it is hard to discern even the ‘atomic’ catastrophes
— let alone the ‘subatomic’ interference detail. The reason is that the caustics are blurred by the finite
size of the sun’s disc and the rapid motion of the water. Indeed, if you ask a child to draw one of these
networks, the pattern that often results (figure 20) can be shown to be geometrically impossible if taken
literally as a caustic. What has happened is that poor resolution makes several caustic curves appear as one.
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The tull analysis of these networks requires very high-order catastrophes and s more complicated
than I wish to discuss here. But a good feeling for how catastrophe theory helps 1s gained by
considering the caustics from a single train of water waves (figure 21). This consists of pairs of
sheets joined at horizontal cusp lines. If the bottom of the pool — the screen — 1s below the level
of the cusp, the observed caustic takes the form of a patr ot parallel lines. This tells us that under

poor resolution the lines we see might really be double, and indeed such arrays of line pairs can
sometimes be seen (figure 22).

Figure 22.

Now imagine that the water wave crest is perturbed, for example by the addition of a weak
wave travelling in another direction. This does not alter the fact that the caustic 15 cusp-edged,
because catastrophe theory assures us that the cusp is stable. But the cusp line need no longer be
straight and horizontal. Often it is curved so that only a part of the caustic surface intersects the
screen, and this gives rise to a distinctive lips-shaped caustic (figure 23), with two cusps. Such lips
can sometimes bc seen (figure 24).

If the additional water wave 1s powerful enough, the cusp-edged caustic surface can be broken
up. One of the many patterns that can then be seen is shown in figure 25 for the case where
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Figure 23.

Figure 25.
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there are not two single waves but two trains of waves. This pattern is one of the resolutions of
the child’s drawing (figure 20). in which manv of the lings are indeed line pairs and their junctions
are the result of giant overlapping lips shapes. Again these caustics can be observed (figure 20).

Figure 26.
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Figure 27.
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Computer simulation of caustics avoids the blurring etfect of poor resolution. The patterns (figure
27) produced on a screen by the superposition of several trains of water waves are then revealed
as being intricate assemblies of all the catastrophic phenomena 1 have been telling you about. The
fold hines are jomed at cusp points, and there are lips, swallowtails and elhiptic and hyperbolic
umbilics, as well as sections of higher catastrophes such as the butterfly.

Turbulence in the atmosphere 15 sometimes strong enough to refract starlight into caustic networks
dancing across the ground (especially for stars low in the sky, whose light has passed through more
air). The networks are too faint to see, even at night, but when we ook up at a star the repeated
passage across our eyes of caustic surfaces in the networks give rise to the intensity fluctuations
that we call ‘twinkling’. One of the more surprising quantitative applications of catastrophe theory 1s
to the statistics of the fluctuating intensity of twinkling starlight. And as Christopher.Zeeman has

pointed out, the fact that the surfaces tend to arrive in pairs gives new meaning to the nursery
rhyme: “Twinkle, twinkle, little star...”.

6. LAST WORDS

The message | have tried to convey i1s that caustics are naturally classified as mathematical
catastrophes, and that many optical phenomena have caustics as their essential feature. Here 1s a
partial list, which includes several topics I have not had time to discuss here:

rainbows Y twinkling starlight Y sparkling sunlight on the sea Y nocturnal images

through rained-on glasses % swimming-pool networks ¥ bright-edged shadows of floating
leaves and insects W™ occultations of stars by planetary atmospheres Y mirages . . .

It 15 always satisfying when abstract constructions match features of the external world - indeed,
such matching is the essence of physics. It 18 especially pleasing when, as here, the phenomena are
not confined to the laboratory but occur in nature where they can be seen by everybody.
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Figure 19.
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