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The Problem of Plateau.

CLASSICATL, problem in the calculus of

variations is to prove the existence of a
surface of least area bounded by a given
contour [. The Euler conditions of this
variational problem form a system of non-
hhnear partial differential equations, expressing
that the reyuired surface has mean cursature
Zero, or, is a ‘‘ minimal surface ”’. This probhlem
of finding a minimal surface to pass through an
assigned boundary —called Plateau’s Pioblem,
derives an exceptional interest from the circum-
stance that the surface can always be exhilnted
to the eye by a simple physical experiment.
Dip a wire having the form of the given boundary-
carve in soap-solution, and tle film adhrmng
to the wire when withdrawn fiomm the solutlion
is the surface reguired. Simple examples are
furnished by the catenvid and the helicoid swhich
correspond to the case when the bounding cursve
is a pair of egqual pair circles, and a helix respec-
tively. It is known from the theoey of surtace-
tension that a very thin film must assume that
form for which the surface-area 1@ 2 mimimum
and that for such a surface the mean curvature
vanishes at every peoint. V\Various forms of such
surfaces of revolution were produced experti-
mentally by TJ. A. F. Plateau who made an
elaborate study of the phenomena of surtace-
tension and greatly [acihtated the study of
Jiquid Alms. (However, while mivestigaling these
beaquliful phenomena, he himsell nerver saw (hem,
huaveng tost his sight tn about 1810 Although the
existence of a minimal surface passing through
a given eurve can be demonstrated simply by
such experimental methods, it is remarkable
that no {theorelical proot of existence 1n  the
general case was known till very veocently, when
in about 1931-32, Radd and Douglas succeeded
independently in giving a satisfactorilv general
existence proof. This appears all the more
remmarkable if we reflect that the names of such
great mathematicians as HKiemann, Weierstrass,
iI. A. Schwarz, Darboux and othels are asso-
ciated with the problem. Riemann, and after
him Weierstrass and others succeeded 1n linrar-
sing the differential equations of the problem,
showing that Plateau's problem is eguivalent
to finding a potential vector X (u, t) in a doman
B of the u, v-plane (boundary (') which gives a
conformal mapping of B on a surface bounded
by [ (the given boundary-curve of the munimal
surface}, and on the basis of #his defimtion
obtained the solution for manv interesting parti-
cular cases., Douglas has indeed considered the
much more general and difficult problem of
proving the existence of a minimal surface in
an m-dimensional space, which is_bounded by
e given contours (Jordon curves) I, I',,--.I
and which has a prescribed topological stracture,
i.e., is required toe be one-rided or two-sidod
and to have a prescribed genus, e has so far
nublished a solution for two-sided minimal sur-
faces of the genus zerofor A =1 and &k 2, and also
onc-sided sutfaces (the tvpe of a Mrebiug band)
with % = 1, and he has announced a solution
of the gencral problem in which he will mahe
essential use of the theory of Abelian funetions

on Riemann surfaces of arbitrary genus. 1In
the meanwhile, R. Courant has developed {4 «nals
of Aath., 1937, 38, No. 3, 74 an inde-
pendent 1w ethod on the line of Dirichlet’s Principle
which not only solves the original Plateau
protilem and the most seneral problem formu-
lated by Douglas but 1s also capahle of yielding
solutions for the problem in cases apparently
not accessible to IYouglas’ original method, in
which parts of the houndaries arve tree on pre-
seribed mamiolds of any dimen<ion less than w.

The problem may be formulated analytically
as follows :~ Suppose that the surface S under
conslderation to be represented by functions
&, (4, v) of two parameters (i, v), (or by a vector

X (u, v) with the T, as components) in a given
domain B of the u, v-plape with boundary C.

These functions shall he continuous 1in B 4+ C,
have piecewise continuous second derivatives in
B, and map I on (. Then the problem is Lo
minmmise by one of these admissible functions

the integral A (X) = / _/ v BG — F% dudy, where
B

with the usual notation

E—J (b"-’f*)z, G =2 (@3&)2 P o= X% o

B\ du AN X LU
Sirice the integral A is Invariant under arbitrary
transtormations of the parameters (u, v) and
their domain B, the latter, if I” is a simple
Jordan curve, may be chosen as the unit circle
u?2 - v* < 1. It is then shown easily that the
problem 18 equivalent to the problem of mini-
mising the classical Dirichlet inteoral D (X) ==

%/ / (X% + X2 du dv. The proof of the existence
R

of a solution is carried out on the basis of the
known solution of the boundary-value problem
of the potential equation 9% p (. v) =0 for a
doman in the u, v-plane bounded by & circlaes Cys
Cy +++ Cp, and a serics of I.emimas of which the
most important are the following :(—

(1) Suppose that in a domain B of the w, r-
plane bounded by & ciceles (Y «+ ¢ Cg, the vector
X {1, ) is continuous and has piecewise conlinuous
derivatives in B and D (X} << M. and maps the
eircles (' «-+ ('z2in a continuous wayv on the pre.
geribed Jordan curves Iy «+o Iz in the m-dimen-
sional X-space. Let O be a point in B or outside
B, ¢, the part of the circle with radius r round
O lying in B. Then there exists for every sufi.
ciently small a value ro with & re A Q.

go that on every connected are of Oy the oscilla-
tion of the vectars X does nat exceal the quantity

€ () ~ [4mM/ | log O | LI particitlar, fur O on €
and & =0 small that O, consistz of a single are,
there exist two points A, A, on U al the same
distance ry from O with | X () - N {A) | 5 € (3).

(2) Tt IR on ('s» be a point of non-equiconti-
nuity for a seqnence of vectors {X,,} which satisly
the assumptions of the above lemuma and map
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('s on & Jordan curve I ¢ In & monotone continuous
way. l.et & be g fixed arc on Up with end-points
A. B containing the point 1 but otherwise
arbitrarily small and let 4" the complimentary are
of Cp. Then at least for a subsequence X, the
image 8 of b defined by X, will cover all [’ PR
except for an arc 8/ whose diameter tends to zero
as »n increases. In other words: the mapping of
Cp on I'p» by X,, tends to a degeneration in such
a way that any small neighbourhood of a point
R i3 mapped on nearly the whole closed curve
I p- Since the Dirichlet integral D (X) is invariani,
under conformal mapping, we may by a linear
transformation. transform the unit-circle into
itself so that 3 given points on C are co-ordinated
tn three fixed pownts on f. Assuming that this
3-point condition is satisfied and that the Dirch-
let integral is capable of finite values. the
solution of Problem I for a single contour [/ =1)
i3 obtained as follows : There exists a minimsing
sequence Xy +++ X, ++«0f admigsible vectors for
which D(X,,)— d for n—> e while always D(X,,) =d
[¢ --lower bound of D (X)] and so these
Dirichlet integrals are bounded. The boundary
values of the X,, are equi-continuous, since other-
wise bv the choice of a sultable subsequence
we would have a point R of non-equicontimuity
on C and this by lemma (2} above contradicts
the 3-point condition which excludes the passi-
bility of an arbitrarily small arc_0 of C being
mapped on nearly the whole curve On account
of the equi-continuity we can choose a sub-
sequence of the X,,—again called <X, —which
converges uniformly oun C. \With these boundary
values we solve the boundary-value problem of
72X = (0 for B and thus obtain a sequence of
potential vectors having the same boundary
values as the X,, and having Dirichlet integrals
not exceeding D (X,), according to a known
theorem which asserts that tle minimal value
of the Dirichlet integral is attained for and only
for the function which solves the corresponding
boundary-value problem. Sinece the new potential
vectors are also adinissible vectors in Problem 1,
they form a minimal sequence Xy »++ X, -+ and

the uniform convergence of thelr boundary-

values implies thewr uniform convergence in

B+ € to a potential vector X = lim X,
n—> 0o

satisfving the conditions of Problem I and
72X =N in B. In each concentric circle the
derivatives of X, converge uniforruly towards
the derivatives of X. Denoting bv 1, the
Dirichlet integral for a concentric circle of radius

r < 1, we have therefore D, (X) =lim D, (X,)
T~ OO

lLetting r—1 we

<< lim D (X,) = d.
¥ o—> OO

obtain DD (X) < d and since the inequality sign
would contradict the asstmplion that d is the
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lower bound, we have D (X) — d, i.e., X solves
Problemn I. To prove that the solution defines a
minimal surface. use is made of the remark that
in using the minimising character of X we neeid
not observe the 3-point condition nor the poten-
tial character of X, to replace X by z (».8) =X
(r, ) with ¢ = 8 - €X (r, ). A arbitrary with
continuous first and second derivativesin B + C.
Rince z satisfies the conditions of Problem I,
D {z) > 4. Passing to the limit e— 0, it is shown

27
that this leads to the condition lim / A (r, 0
r—>10

r X, XH df = 0. Now have wch_- (w)=J3] ( dfu )2

13 il lﬂg )
hﬁp . a-’ﬂp- z
— i
< (r >  of

[{w? ¢ (w)}, (I (2) imaginary part of 2] is
& potential function in B and from the above

2
condition ﬁ/ A(r,0)r X, fgdﬂ — 0 as »-—> 1,

lll

|

it is proved that r X, X, vanishes identically in B,

Since the imaginary part of ? q',» {w) vanishes
this function must be real and constant in
B, t.r.. wih (0)=C, ¢ (w)= C/w?; but ¢ (w) is
regalar at wr =0 and so C =0, e, ¢ (w) =0
which expresses the character of S as.a minimal
surface. Therewith is solved Plateauw’s prablem
for ¥ = 1. 1t must be noticed that incidentally
for m =2 when [ is a Jordan curve in the
x, y-plane, we obtain Riemann’s mapping theorem
(& remark due tc Douglas.)

Ior & > 1 certain additional conditions are
required to prevent the degeneration of the
domain B. On the basis of some fresh lemmas
on the lower limits of [) (X), the solution of
Plateau’s problem for & =2 1s first given and
then the solution for the general case Lk > 1
is consirucled. by assuming that the problem
has been solved for all lower values of & As
before gencral theorems on conformal mapping
of nuiltiplv—conpected domains result as bye-
products of the reasoning. {n the latter part of
the paper. (ourant also glves an alternative and
considerably stmplified solution by making use
of fundamental facts concerning conformal
mapping of domains in a plane, and proves that
his solution of 1lateau’s problem furnishes at
%’JhE Igarme time the surface of least area bounded

v 1.

We await the further papers of Prof. Courant
with great 1interest. |
V. R, T.




