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The geometrical theory of diffraction is a very convenient and easy method of calculating diffraction
patterns, and an elegant approach to the problems of Fresnel diffraction at apertures and obstacles.
In spite of its long and chequered history, it has not found sufficient emphasis in the standard
literature on optical diffraction. Between Young (1802) and Keller (1962), the Indian school

(1917—45) led by Raman was active in the field.

In recent years, there has been a revival of interest in
the so-called geometrical theory of the diffraction of
light! =3, consequent on the systematic work of Keller?,
who in the late 1950s developed the detatled methodo-
logy for this approach. This concept of treating optical
diffraction using geometrical ideas was first introduced
by Thomas Young in 1802. In the intervening years,
much progress was made and many salient features of
the recent ideas in geometric theory were anticipated
during the three decades ending in 1945 by the active
school led by C. V. Raman. Unfortunately, this work
has gone unnoticed in the subsequent, modern
Iiterature. It is our intention In this article to give a
connected account of the development of the geometric
theory bridging the gap between Young and Keller by
presenting the work of Gouy, Sommerfeld, Rubinowicz
and Raman.

The Helmholtz—Kirchhoff theory of scalar waves
presents many computational difficulties 1n the theore-
tical calculation of a general diffraction pattern. The
procedures become inordinately complex even m the
cases of apertures and obstacles having standard
geometrical shapes. Qver the years, attempts at
improving this technique have met with very limited
success. It is in this context that the oldest and perhaps
the simplest theory, viz. the geometrical theory becomes
relevant.

Diffraction at edges and apertures

Thomas Young® was the first to propose that when
light falls on a straight edge, the edge ‘reflects’ the light
into space and the associated interference between the
‘edge wave’ and the geometrically transmitted wave
gives rise to the observed diffraction effect. Gouy® in
1886 gave reality to Young's edge waves when he
observed that the sharp metallic edge held in a pencil of
light appears luminous and the strongly polarized light
is diffracted through large angles. Maggi' later
elaborated Young’s model and showed mathematically

e P s oyt ey

— e .

The authors are in the Raman Research Institute, Bangalore 560 080.

22

that the diffraction integral over an aperture can be
reduced to a line integral on the boundary of the
aperture and a contribution due to the geometrically
transmitted light. Sommerfeld®, who was apparently
unaware of this work, independently solved the
problem exactly for a straight edge. This theory of
electromagnetic diffraction at a straight edge made of
perfectly conducting matenal leads to an interesting
result. The field at any point can be looked upon as a
sum of the transmitted wave and the wave that appears
to emanate from the edge. This edge wave is given by
the asymptotic formula

ulr, @) = vir, d— o) v(r, ¢ +¢,), (1)

where

. 6) = 41 e 1 }
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The + or — sign is taken according as the electric
vector is parallel or perpendicular to the edge and ¢, 1s
the angle of the incident ray and ¢ that of the diffracted
ray as measured from the plane of the diffracting screen
{see Figure 1). Along the shadow boundary v diverges since
f=mn. (The so-called uniform geometrical theory of
diffraction overcomes this lacuna®, but we do not
discuss 1t further in this article)

The geometrical theory resolved, for the first time,
the apparent puzzle associated with the concept of edge

Incident ray

Screen

Ditfracted ray

Figure 1. Duffraction geometry: parallel rays incident on a straight
edge at a glancing angle of ¢,,.
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diffraction, that the intensity of the bright fringe
remains almost constant as the observational plane
recedes from the edge. Although the edge wave is
cylindrical, its amplitude is dependent on the angle of
diffraction. The amplitude increases as the shadow
boundary 1s approached (by a factor sec 6/2) and the
1 /\/ r law for amplitude diminution exactly compensates
this.

Sommerfeld’s theory also agrees with the Fresnel
scalar theory of diffraction for a straight edge. But, 1t
fails to account for the observed diffraction pattern by
metallic edges. Raman and Krishnan® pointed out that
this failure is due to the assumption that the matenal 1s
perfectly conducting. Instead, by incorporating the
complex metallic reflection coefficient 1n the second
term of eq. (1) these authors neatly accounted for the
experimentally observed features®1°.

Rubinowicz'! many years later rediscovered Maggi’s
result that the Kirchhoff’s surface integral over the
diffracting aperture in the limit of short wavelengths for
an incident spherical wave could be reduced to a line
integral over the aperture. He also obtained the result
that the diffracted field at any point i1s made up of two
components—(i) the familiar geometrical optical field,
and (i1) a wave emitted by the boundary of the aperture.
Laue!? showed that in Fraunhofer diffraction also, a
similar transformation from surface integral to line
integral along the boundary is possible. Raman'?
showed the integral transformation to be a far simpler
procedure if one makes the justifiable approximation of
ignoring the obliquity factor. It must be remarked that
all these procedures are valid only when the size of the
diffracting object is large compared to the wavelength
of light.

Another important aspect of Rubinowicz’s work is
that the contour integral can be reduced by the
stationary phase method to contributions from a finite
number of points on the boundary whose locations
depend on the point of observation in the diffraction
field. Further, these special points for normal incidence
can be easily obtained by drawing perpendiculars to the
diffracting boundary from the point of observation. At
these points, the incident light ray and the diffracted ray
reaching the point of observation satisfy a reflection
condition. According to this, when the incident rays are
parallel and normal to the diffracting cdge, the
diffracted light rays reaching any given point of intcrest
are also normal to the edge. Clcarly, this answer yields
the cylindrical boundary waves for straight cdges as
shown in Figure 2,b. The fcet of the perpendiculars
mentioned earlier are the special points which scem to
be the source of radiation. Based on Raman’s model,
Ramachandran'#'® also obtained the same result.

From a given point of observation only these
points—poles—should be visible and this was experi-
mentally demonstrated by Raman'!?!®, who showed
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Figure 2. Diflracted rays can be obtained from the Rubinowicz
‘reflection’ condition. a, Diffracted rays will be on a cone symmetric
about the edge for an oblique incidence. b, Diffracted rays will be on
a disc perpendicular to the edge for normal incidence.

that only a finite number of luminous points are visible
on the boundary when viewed from the shadow region.
For these special points the total optical path from the
source to the point of observation via these points 1s an
extremum. This principle i1s very reminiscent of the well
known Fermat’s principle in geometrical optics. For
this reason, it has been referred to as Fermat’s principle
for edge diffraction by Keller. When the incident light
rays are parallel but are incident on the edge at an
angle then Fermat’s principle of diffraction will result in
diffracted rays travelling on a cone symmetrical about
the local tangent to the edge. Thus, one gets diffraction
wavefronts to be parallel cones with the edge as their
common axis. This has been depicted 1in Figure 2,a.
Kathavate!’ stated that, when dealing with sharp
corners of apertures and obstacles, the sharp corners

should be taken as additional point sources of light

emitting spherical waves. These are 1n addition to the
poles already considered. A decade later Keller* also
suggested the same procedure. However, these workers
did not work out the diffraction coefficient. Independ-
ently, around the same year, Miyamoto and Wolf*'® not
only came to the same conclusion but also worked out
the corner-diffraction coeflicient.

Diffraction within the shadow

The geometrical theory of diffraction clearly indicates
that the shadow region of an obstacle gets light only
from the edge wave. These edge waves will have to be
added at any point within the shadow to get the net
optical ficld there. From what has been satd in the
previous scction it follows that we need to take only
two types of contributions: (1) from the poles obtained
with respect to the point of observation, and (i) from
the corners. The question of the phase of the radiation
from the pole was considered by Ramachandran®®, He
showed using the Cornu spiral method that the
radiation received at the point of observation from the
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regions ncighbouring the special points (poles) resulted
in a phase advance or a phase lag of n/4 depending upon
whether it is one of maximum or minimum optical path
from the source to the point of observation via the
edge. The same result was obtained many years later by
Miyamoto and Wolf'®,

Surface diffraction

So far we have considered diffraction only at sharp
edges. But in reality edges are never perfectly sharp, but
are rounded. An extreme example of this was
considered by Raman and Krishnan'’—the Fresnel
difflraction by a spherical object. One might naively
regard this as equivalent to diffraction by a circular
disc. However, in the case of diffraction around metallic
spheres, they noticed that the intensity of the central
bright spot is always lower than what one observes for
a circular disc of equal diameter. Also, the intensity of
the central spot is found to be a very sensitive function
of the distance from the centre of the sphere. In fact, it
exponentially decays below the intensity of the disc spot
as the point of obse¢rvation approaches the sphere. They
accounted for this by suggesting that light actually
creeps over the spherical surface and the light reaching
any point of observation emanates from the circular
boundary along the tangent cone drawn to the sphere
from the point of observation. They used the
exponential law derived by Riemann-Weber?® for
electromagnetic wave propagation around the earth
and got a beautiful fit with experimentally observed

data.
The more recent work?® on the geometrical theory of

W

diffraction was stressed by Raman’® as early as 1919.
He argued that for normal incidence the diffracted
‘rays’ will be predominantly proceeding in the direction
of the local normals to the edge of the aperture. Hence,
there will be a concentration of light along the evolute
(the envelope of the normals to a given curve is defined
as its evolute) to the diffracting boundary. Raman also
demonstrated this experimentally and called these the
diffraction caustics (Figure 3). Of course, the diffraction
caustic degenerates into a point in the case of a circular
disc, leading to the familiar Poisson spot. A few years
Jater, Coulson and Becknell’?' (for a disc) and
Nienhuis?? (for an aperture) did similar experiments
and obtained the same results.

Slits and gratings

In the case of multiple straight edges as 1n a slit or an
array of slits, the standard procedure is to employ the
Fresnel integral or Cornu spiral to work out the
diffraction pattern. In the geometrical theory of
diffraction, as Raman®? showed, the diffraction pattern
can be obtained by adding the various cylindrical edge
waves. This model leads to the well-known answers for
a slit or a grating in the Fraunhofer diffraction limit.
Keller's recipe to deal with these situations is also
essentially the same.

Semitrasparent edge

Anathanarayanan?® studied the diffraction at straight
edges of thin films of metals coated on glass. When the
metallic coatings were thin enough, he saw fringes of
high visibility in the shadow region behind the metalhc

diffraction at smooth surfaces is based on essentially the
same mechanism. The detailed theory gives a series
expansion for the attenuation coefficient which turns
out to be different for the electric vector parallel or
perpendicular to the surface. Raman and Knshnan's
theory has only the leading term of this series. This 1s
sufficient to account for the experimental data. But one
feature which is important in this process of creeping
is that the attenuation coefficient is a complex number.
Hence when the waves interfere after creeping they have
additional phase differences over and above that due to
the actual path travelled by light. Keller invokes the
generalized Fermat’s principle, whereby the actual path
from the source to the observer via the surface should
be an extremum. This is only possible when light
‘creeps’ on the surface, travelling along a geodesic on
the surface. In fact, for oblique Incidence on a
cylindrical surface the light creeps along a helix.

film. But when the film was thick, he observed in this
region, the familiar gradual decay in intensity. He
explained this fringe system in the shadow region as a
consequence of the interference between the cylindrical
edge wave and the wave weakly transmitted by the thin
metallic film. When both these waves are of nearly
comparable amplitudes the fringe system had a high
visibility or contrast.

Implications of the theory

Diffraction caustics
Figure 3. Diffraction caustic of amn elliptical aperture. (After

An important implication of the geometrical theory of  Raman'¢)
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Fraunhofer diffraction

A special mention may be made of Raman’s'? studies
on Fraunhofer diffraction by triangular and semi-
circular apertures. Here, the boundary of the diffracting
object i1s replaced by a set of points. Fraunhofer
diffraction of an equilateral triangular aperture has a
six-fold symmetry and 1s obtainable from an interfe-
rence of radiation from three point sources placed at
the vertices of the triangle. In the case of a semicircular
aperture, Raman'? argued that in effect we can replace
the boundary by three points. One lies on the curved

edge its position given by the foot of the perpendicular

from the point of observation to the curved edge, and
two more respectively at the two corners. This leads to
the observed higher symmetry in the Fraunhofer
pattern than that of the object.

Again in all their studies on apertures, Raman’s

school made a special experimental study of pattern
transformation as one went from the Fresnel diffraction
limit to the Fraunhofer diffraction limit.
important
diffraction is centrosymmetric while Fresnel diffraction
is not. In Figure 4 we have shown this phenomenon.

Shadow patterns

On the experimental side, Kathavate'’, using objects of

a few millimetres and 10 to 50 hours of exposure, got

Figure 4. Transition from Fresnel to Fraunhofer diflracvon pattern
in the case of a semicircular aperture. (After Kathavate!')
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This 1s
in view of the fact that Fraunhofer

beautiful and intricate diffraction patterns in the case of
apertures and discs of various shapes. He came up with
a simple and an elegant geometrical procedure, based
on the geometrical theory of diffraction, to work out
the positions of diffraction maxima (or minima). The
whole geometrical construction i1s carried out on the
plane of observation on to which we project the
obstacle and the rays from the special points. It is easy
to convince oneself that to get the projection of the
poles, we just draw perpendiculars to the boundary of
the shadow from the point observation. Light from the
feet of these perpendiculars must be considered while
calculating the positions of maxima or minima. In
Figure 5, we show his theoretical calculation along with
the observed diffraction pattern for the square disc.
This work appears to have gone unnoticed in the
literature. Recently English and George** have reported
the same result. The shadow patterns from elliptic discs
of different eccentricities are shown n kFigure 6.

Some new results

The Poisson spot

The bright central Poisson spot in the case of a circular
disc is the brightest region of the diffraction pattern 1n
the shadow and it is due to the constructive interference
of radiation from the entire boundary. At other points
of observation we have only two boundary waves
emanating from diametrically opposite poles, leading to
periodic weak maxima (and minima). Even 1n the case
of other obstacles like elliptic, square, triangular and
rectangular discs, we get such a central spot. It 1s easy
to work out the fecatures associated with this Poisson
spot in the language of the geometrical theory of
diffraction. For example, in the case of an elliptic disc,
the centre of the pattern gets light from four poles—two
poles at the ends of the major axis and two poles at the
ends of the minor axis of the ellipse. Radiations from
the poles of the major axis (or minor axis) are 1n phase
at the centre. But radiations from a pole associated
with the major axis may not always be in phase with
the radiations from a pole associated with the minor
axis. In fact, as we recede from the diffracting plane
along the central axis thcse pole radiations will be
successively in and out of phase, giving nse to 2
brightness fluctuation in the Poisson spot. For a square
obstacle, the fluctuations are due to the pole and the
corner radiation being in and out of phase. Since corner
radiations arc weaker as their intensity falls as 17,
these flutuations will not be prominent.

The Poisson spot associated with an clliptic disc s, 1n
many ways, different from the one associated with a
rectangular obstacle whose length and breadth are
respectively equal to the major and minor diameters. i
we ignore the corner radiation, then we get four poles
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Figure 5. a, Positions of intensity maxima for a 90° sector as obtained from geometrical theory of diflraction. b, Diflraction pattern
for a square disc: monochromatic light (left) and white light (nght). (After Kathavate'”)
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Figure 6. Diffraction pattern within the shadow of an elliptic disc.
The piciure shows the effect of increasing eccentnicity. (After
Kathavate!?)
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as in an elliptic disc. Yet the net intensity at the Poisson
spot will be different for the elliptic disc due to the
curvature at the boundary. This arises owing to the
focusing effect of a curved wavefront emitted by a
curved boundary. In fact, Keller* shows from the
geometrical theory of diffraction that a curved
boundary contributes more than a straight boundary
when the point of observation is towards the centre of
curvature. Hence poles of the rectangle make a weaker
contribution to the Poisson spot than the poles of an
ellipse of ‘equal’ size. To our knowledge these
interesting consequences of geometrical theory of
diffraction have not been emphasized in the literature.

Diffraction at a strip and at a cylinder

In the shadow region at a finite distance from an
opaque strip or a cylinder, experimentally onc observes
a fringe system. Careful investigations show that this
fringe system is strictly not a set of equidistant bright
and dark fringes. Nor is the visibility of the fringe
system the same all over. In the language of the
geometrical theory of diffraction the fringe pattern in
the two situations is due to entirely different processes.
For a strip it is the interference between the two
cylindrical waves from the two straight edges. On the
other hand, to reach any point in the shadow of a
cylinder, light will have to creep from both sides along
the boundary. Thus the interference pattern in general
will be different in the two cases. The same arguments
are valid even in the case of diffraction at a circular disc
and a sphere. However, calculations of the diffraction
pattern are easy for the case of a strip and cylinder. At
extremely large distances there is very little creeping
and the two patterns can be expected to be nearly the

CURRENT SCIENCE, VOL. 61, NO. 1, 10 JULY 1991



0.058

05 0.052 0.054 0.056

distance {cm) ——>

Figure 7. Calculated intensity pattern in the shadow region of a
strip (full line) and a cylinder of equal width (dashed line).

same. In Figure 7 we have compared the calculated
diffraction pattern due to a strip and that due to a
cylinder of diameter equal to the width of the strip.

Diffraction symmetry

We have already touched upon the symmetry of a
diffraction pattern in relation to aperture symmetry.
Diffraction symmetries are also strongly influenced by
polarization. Implications of the geometrical theory of
diffraction in this regard will be briefly considered here.
In the case of scalar wave diffraction, a circle or a
sphere gives rise to a pattern with circular symmetry
while a square yields a pattern with a four-fold
symmetry. In polarized light, however, we can come to
some interesting conclusions concerning these symme-
trics. Let us say that a linearly polarized wave is
incident normally on a square aperture [or an obstacle]
with its electric vector parallel to one pair of edges.
Then from eq. (1) we conclude that the cylindrical
waves emitted by this pair of edges are not identical to
the ones emitted by the other pair, since for this second
pair the electric vector is normal to the diffracting edge.
Thus the diffraction pattern will not have four-fold
symmetry but a two-fold symmetry, However, when the
elcctric vector is parallel to the diagonal of the square
the pattern will have a four-fold symmetry. Only when
the incident vibration is circularly polarized do we have
the symmetry obtained for scalar waves. Calculations
based on the Keller's theory indicate that thesc features
are noticcable only at a short distance from the screen.
At larger distances, i.e. in the paraxial approximation,
this symmetry is lost owing to smallness of the second
term in ¢q. (1).
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Multiple-edge radiations

In another respect Keller improved the geometrical
theory of diffraction. We shall illustrate Keller’s
correction with the example of single-slit diffraction. It
was argued earlier that in this case we have two
cylindrical waves diverging from the two edges. A wave
from one such edge will reach the other edge and will
result in a second cylindrical wave. This process could
go on endlessly, indicating that each edge gives rise to a
multiplicity of edge rays. These have been termed by
Keller as second, third, etc. diffracted edge rays. In
principle, a complete solution must include the effect of
these multiply diffracted rays. However, in practice,
these extra effects do not appear to be all that
significant, since the strength of the diffracted ray
decreases considerably with increasing order.
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