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1. Some definitions

Afline geomelry is the study of alfine varieties. An affine
vanety 15 the set of common zeroes of a coltection of
polynemial functions 1 C", the affine n-space over the
complex numbers {(or more generally k", k& any
algebraically closed ficld). For example the set of points
of the form (1%, 1) e C*, where teC, is an affine variety,
since 1t 1s the zeroes of the single polynomial
fle.¥}=x3~y% where x and y are the co-ordinate
functions on C2 Il X <« C* and Y C™ are two affine
varieties, then a map of affine varieties 2 X - Y is called
a morphism 1f it is given by a polynomial map
F:C"-C" such that F{(X)< Y. Any map F:C"-C" is
given by an m-tuple (F,,...,F,) where F/s are
funictions on C" (i.e. are maps C"—-»C). So once we fix
the co-ordinates, F’s are functions in n variables. What
we insist on is that, we consider only F,'s which are
polynomials 1n these variables.

Example 1.1: Consider CLC"‘, where f(f)=(t%13).
This gives a morphism CoW={X’—-Y?=0}.

A morphism f: X — Yis an isomorphism if there exists
a morphism g¢:Y-X such that ¢gOf=Id, and
JFO g=1dy. In the above example one can see that fis a
bijection of sets but f is not an isomorphism. So
isomorphisms are more than bijective morphisms.
(Topologically we cannot distinguish C from W, but as
algebraic varieties they are distinct.)

Instead of W, if we considered a small deformation,
W,:{X3—-Y?=¢} = C?% then one can see that there is
no non-constant morphism f; C— W,. Though onc may
verdy this by hand in this simple case, less trivial
examples would need the powerful machinery of
projective varieties to analyse. (In this particular case it
will be easier il we knew what the genus of a curve is))
We will not go into it here, except to wara the reader
that often deep results in affine geomeétry will use results
[rom projective geometry and both these subjects
should be considered part of a bigger whole—algebraic
geometry.

With the above easy dcfinitions, we already come
across a natural problem, which even in fairly simple
cases, is not well understood at present. Let X < (7
and Yo " be two affine varieties. Assume they are
isomorphic. Then by delinition, we have maps F, G:
C'—C" such that F{X)cY and G(Y) =X and the
induced maps f=F , and g =G, are 1somorphisms. We
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may ask whether we can choose F and G to also be
isomorphisms? (Of course if we can choose £ 1o be an
isomorphism, then we can choose G=F "1) If X is a
point then since any point ¢an be taken to any other
point by an automorphism of C” we are through. So let
us take the next simplest case: let X < C? be an affine
variety isomorphic to the complex line C < C2 Does
there exist an automorphism of C? which takes X to C?

Already such an innocuous-looking problem is very
hard.

Example 1.2: Let X be defined by the equation
X+ v+ xt+y2+2xpi4yt=0,

Then one can show that X =~ C. Does there exist an
automorphism of C? which takes X to the line defined
by x=0? One can do this by hand easily if you know
the right principle.

This principle enabled Abhyankar and Moh! (for a
self contained account see ref. 2) to solve the above
problem in the affirmative as recently as two decades
ago. The prool, needless to say, is very intricate. There
arec many other results known in this direction. But, for
example, even the case of C in C? is as yet intractable.

Before we get carried away, I want to stress that the
problem of curves in 3-space is more meaningful in this
generality than say the case of curves in 2-space. For
instance, consider the two curves xy—1=0 and
=0 in C?. One can easily see that both these
curves are isomorphic. Take for instance, Fix,y)=
(x°,y%) and G(x, y)=(x2 3. But there does not exist an
isomorphism A:C?—C? which takes one curve into

another. This can be scen by the following two fairly
obvious facts:

l. If F=({,¢g) is any automorphism, then the Jacobian
matnx

J(ﬂ9)=(J g’)
X ¥

has determinant which is a polynomial with no zeroes
and hence it is a non-zero constant.
2. Since F is an automorphism, f,g can be chosen as
coordinates of C* as well and in particular neither of
them can be a product of two non-constant polynomials
(1e. [, ¢ are irreducible polynomials),

But it was proved by Cowsik and Nori? (see, e.g. ref.
4) that if C is any smooth (read manifold) curve
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embedded in two diflerent ways in C", n > 4, then there
exists an automorphism of C" taking one to the other.
{The result 1s much more general, but we will not go
into it here.)

The previous discussion throws up yet another
natural and tantalizing problem the answer to which is
not known. We saw that if F:C*->C? is an
automorphism, then the Jacobian deteminant is a non-
zero constant. What about the converse:

If F=(f,g):C*~>C? (or more generally C"—C") is a
morphism whose Jacobian determinant is a non-zero
constant, is F an automorphism?

This 1s the famous ‘Jacobian conjecture’. This
problem is notorious in the sense that many well-
known mathematicians have worked on it in the last
several decades and several alleged preoofs have been
published. All of them turned out to be wrong. The
inverse function theorem of calculus will tell us that the
condition on the Jacobian matrix is what we need to
get a local inverse. The problem 1s to find a global
interse. The answer to the question is in the negative if
we allow ourselves entire functions, not just polynomials.
For example we can take F=(e*,e *y). Then the
Jacobian determinant 1s 1, but the map 1s not even
injective. The conjecture has been verified {or poly-
nomials /, g up to very large degrees. One reason for the
difficulty 1s that the structure of automorphisms of C”
can bc fairly complicated. Automorphisms of the
complex hne C are fairly easy to understand. They
consist of linear maps z|o az+b,a,beC, a#0. Already
for C?, we have nonlinear automorphisms of the
following kind:

xjt»ax+b and ybeoy+flx) a,c#0,

where fis any polynomial in x. It 1s known classically
that all automorphisms of C? are composites of such
automorphisms. Once we go to higher dimensions even
this is not known. These are very fascinating and
wimportant problems n afiine geometry, Therc are
specific examples of automorphisms of C?, constructed
by Nagata®, which we do not know to be elementary in
the sense that they are composites of automorphisms of
the above type.

There is another notion of ‘clementary’ i algebra
which often comes up in many situations. Let A be any
commutative ring {with 1). For example,

I, A=C[x,y} the ring of polynomials,
2. A=lu+ibla,b are Integers?, the ring of Gausstan
INICPCES.

Let SL(2.A4) be the group of 2 X 2-matrices over A
with determinpant 1. Consider matrices of the Torm

(l * (I {1)
and
(] ) « |
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and take the subgroup generated by such matrices in
S L(2, A). These matrices are called elementary matrices
and the subgroup generated by them is denoted by
E,(A). (A similar notign can clearly be defined for any
S L(n, A).)

Example 1.3

1. If A=a field, say C, then SL(n, A)=E, (A).
2. Let A=C[x,y], polynomial ring in two variables.

Let
. 2
A = (l+1:3: X )
—y 1-xy

Then MeSL(2, A) and one can show that A is not
clementary.

(However there is a deep theorem of Suslin® which
says that, if A=k[x,,...,x,], k a ficld, then § L (n, A)=
E (A in>13)

Now the structure of automorphisms of C? implies
that if F=(f,g) is an automorphism with det J(F)=1,
then J(F) 1s actually elementary in SL{(2,C[x,y]). This
was shown by Wright”. He also showed that if F:C?
—C? js any morphism with J (F) elementary, then F is
an automorphism. Unfortunately these and other

advances in the theory have not yet led to a solution of
the Jacobian conjecture.

2. Eqguations defining varieties

Now I want to Jlook at a set of problems with a
different flavour. Granting that our aim 15 to study
affine varieties, it is clearly important to study the
equations defining them, If X < C" is defined as the
zero set of say fi,...,} i then for any polynomiats g, the
polynomial F=2Xg f. also vanishes on X'; hence X s
also dc¢hned as the zero set of f,,..../,, F. Clearly
adding on this F has no cffect. But it illustrates two
things:

I. The equations defining X' may not be unique. There
could be an entircly dilferent set of polynomials {a
‘better’ set, perhaps) defining the same variety.

2. The sct of all functions vanishing on X 1s closed
under the operations of addition and multiphcation by
any function. In algebra this is the some as <aying that

I (X'} = {the set of all functions vanshing on X,
s an rdeal in R=Cl\v .. 0,1
Given these facts, the classical fHdbert basis theorem
(sce refl 8 for exaomple) will tell us that there exists a
finite set £y, ... i TUY) such that any clement Fel(X)

can be written as a linear combmatwa F =Xy, f, with
g,¢ 8. In particular, any affine vaoety 1 defined by o

Res!
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finite s¢t of polynomials. Now it is natural to ask the
[ollowing:

Bhat is the smallest number of equations required
to dcfine a given variety in C"?

There are some subtieties which make this question not
well posed. For example, if we take the complex line C,
with co-ordinate function x, then x=0 and x*=0 both
dehitne the origin. Do we consider these two varieties to
be the same or distinct? There are reasons to keep track
of this although in this simple example this is not
evident. So, let us work out a more complicated
example.

Example 2.1. Consider the curve X ={(t*,1%15)e C?},
teC. Let x,5,z be the co-ordinates of C*) Let us
consider the 2 X3 matrix,

Mr—-(x 4 :2)
y 2 X

(1 wrote this down because 1 have information which
you may not have) Then any 2x2 minor of M
vanishes on X. Further any polynomial which vanishes
on X will be a linear combination in R=C[x,y,z] of
these minors, ie. I{X) is generated by these three
eiements. It can also be shown that [{X) cannot be
generated by a fewer number of elements. But if we

look at the common zeroes of the two polynomials,
F=xz—y*and

X y 2
G=det{ vy 2z x*
z x* 0

then one¢ can verify that it is precisely X. Of coursg F,G
do not generate I(X), but they define X at least set-
thearetically. S0 in our question, we had better specify
whether we are looking for the number of generators of
I (X) or just the number of equations required to define
X set-theoretically, since these numbers can be diflerent.

So we will distinguish between these numbers by
adding the prefix ideal-theoretic {0t scheme-theoretic)
and set-theoretic and use the notation p(X) and u (X)
respectively. It 1s clear that u(X) = p,(X). In the above
example, u{X}=13 and p,(X)=2.

Before we set about trying to compute u(X) we
should know what propertics of X will influence u(X),
what data will give us some clue. The crudest datum we
can start with is the dimension of X. Intuitively
everyone knows what dimension means and we shall
not try to make it precise here. For example affine n-
space has dimension n. What we have been calling
curves have dimension 1. Loosely speaking, we may do
the {ollowing:

Let X < C" If they are equal, then the dimension i1s
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of course n. If not, we may change variables so that the
point P=(0 ,...,1)¢X and ¢=(0,...,a)e X for some
a. Now look at Y=image of X in C*"! under the
projection

(X300 X2 (Xysn s X0 y):

Then the closure of Y is an affine variety and we call
dim X =dimension of this closure. Continuing like this
we can define the dimension of any affine variety. Of
course, a lot of things have to be checked to make this
a good definition, 1n particular that this number does
not depend on the projection that we have chosen. We
will skip over this. Yet another intuitive way is to look
at a point Pe X, where X is a manifold, That such
points exist can be proved. Having found one such, we
may find local co-ordinates x,,...,x, of PeC", such
that X is locally defined by the vanishing of
x,=x,= ++ %, =0, Then define dim X=n—k

If X is defined by r equations in C”, then since each
gquation can reduce the dimension at most by one, dim
X>n—r. Thus we get a crude estimate g, (X)
>n—dimX. We say that X is a (ideal-theoretic)
complete intersection f p(X)=n—dimX and a set-
theoretic complete intersection if u (X)=n-dim X. So
the curve {(’,¢%t°)eC?|teC} is a set-theoretic com-
plete intersection but not an ideal-theoretic complete
intersection. A question attributed to Kronecker is the
following:

Is every curve X < C? a set-theoretic complete
intersection?

Complete intersection varietics have many desirable
properties. But to recognize one as such is not easy.
Kronecker's problem is completely solved 1n positive
charactenistics {whatever they arej (ref 3j but has
withstood all onslaughts 1n its original form over C.
Thas 15 not to say that all attempts have been futile, At
least when the curve in question is a manifold, it is
known, due to Ferrand and Szpiro® that it is a set-
theoretic complete intersection. Their proof goes along
the hines of the proof we described in the earhier
example.

If X< C?is a smooth curve (i.e. a manifold), then
one shows that it i1s ideal-theoretically defined by the
2 x 2 minors of a 2 x 3 matrix. (That it is defined by the
r X r minors of some rx{r+1) matrix is easier and is
valid {or any curve, not just smooth curves) Let us call
this matrix M=(qg,). The main point is that in a
suitable sense we can assume the first 2x2 matrix
to be symmetric, 12. a,; =a,,. (This is not strictly true.)
But if we assume this, then consider the 3 x 3 matrix,

M
N = .
(‘-’113 di3 0)

Then the two equations a,;a,, —a;, and det N will
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define X set-theoretically exactly as in the exampie. The
Ferrand-Szpiro proof is to make this argument
rigorous. Unfortunately it requires techniques beyond
the scope of this article.

At this point it 1s legitimate to ask the question,
whether there 1s any variety X < € which 1s smooth,

but not a complete mtersection? We will touch upon
this in the next section.

3. Certain intrinsic invariants

To systematically study the problem stated in the
previous section, it becomes necessary to understand
properties of complete intersection varieties. These
intrinsic properties might suggest methods to recognize
when a variety is a complete intersection. For example
we have already seen an intrinsic invanant called the
dimension. For instance, if we took say, the union of a
curve and a surface, our defimition of complete
intersection itself is unclear. We also saw that the curve

X={(,15t)eC?|te C}

is not a complete intersection. One can see in this
example that in no neighbourhood of the origin can we
define X by two equations, This 1s a local invariant.
This difficulty disappears if we assume that our variety
is smooth. Even after assuming that the variety 1s
smooth, there might be invariants which have special
values for complete intersections. Our aim is to look for
such invariants or obstructions which when#0 show
that the variety is not a complete intersection; then you
might hope that if these are indeed zero, then the
variety might be a complete intersection. Of course,
these must be coarse enough to be of some use and not
just tautologies, but fine enough to distinguish complete
intersections among affine varieties. Finally it is only
such systematic studies which will reveal the mysteries.

Let us again go back to a smooth curve X in C%, X is
a one-dimensional complex manifold (i.e. Riemann
surfaces). So locally, X U <, U open. So all 1-
forms on X are of the form fdz, f a locally holomorphic
function and z a local co-ordinate. Thus the bundle of I-
forms, denoted by Q} and called the cotangent bundle,
is locally generated by one element. Now, assume that
X is a complete interscction of two cquations, say fand
g. Consider the Jacobian matrix,

J,_,_(f, f, f:)’
9« Y9y Y.

where x, y, z are the co-ordinates of €. Since X is a
manifold, the implicit function theorem tmphes that at
any point Pe X, at Jeast one of the 2x2 minors of J
does not vanish. Since this ts true at all points and the
minors are global functions, we may appeal to a well-
vnown theorem Iilbert’s nullstellensarz  (which s
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intuitively not hard) (see for example ref. 8) to see that
there exist global functions a, b, ¢ such that the
function A=aJ,,+bJ,;+cJ;yy, where J;; are the
minors of J, does not vanish on X. Then one sees that
the l-form w=adx+bdy+cdz does not vanish
anywhere on the curve. So if X 1s a complete
interscetion, then it must have a nowhere vanishing -
form {globally). This 15 a stringent restriction. Now we
know what we are looking for, 1t 1s not very hard to
construct examples of X « C* which do not possess
such 1-forms and thus we get examples of non-complete
intersection curves. The existence of a nowhere
vanishing 1-form fortunately does imply that X is
complete intersection. |

This aside, my point here is that an intrinsic
jnvariant has at least told us what a necessary
condition is for a curve to be complete intersection.
These type of invariants are called Chern classes. For a
smooth curve X, the property that X has a nowhere
vanishing !-form (or equivalently €} is singly gen-
erated) is generally termed as its 1st Chern class being
zero, written ¢, (Q3)=0.

Let me explain this a little more by the following
related problem. We know that any point PeC" is a
complete intersection. (If P=(x,,...,2,) then I(P)=
{x;—ay, X3—03,...,X,—,)}.) Instead assume that
PeX «C" where X is a smooth affine variety of
dimension d. One might ask whether there exists d
functions f,,...,f; on X such that their common zero
set is precisely P. (We then say that P is a2 complete
intersection in X). To be specific, let us consider
X={y?—x3—=1=0} in C* and Y={x’+p*+2°—1=0}
in C*. X is a smooth curve and Yis a smooth surface. It
so happens that a general point Pe X 1s not a complete
intersection on X but it 15 so on Y. There seems to be
no clue as to what is going on. Of course, if one tries to
do this by brute force one may succeed. But it will not
satisfly the aesthetic sense of the mathematician, who
will look for a more elegant approach, albeit not so
elementary. One approach is as follows. On any curve
X let us first take the abclian group gencrated by
formally adding pomts of X. Let us call this F(X). So a
typical clement of F(X) is of the form Xa P, u,ed,
P.e X, points. The sum is just a formal sum. If fis any
non-zero function on X and Pe X s such that f{P)=0,
one may define vp (Y eZ 10 be the order of vanishing of

fat P. Now given f, one has an clement v, (f}) Pe F(X)

Notice that, this sum is fintte, since f ¢can vanish at only
[imitely many points. These ¢lements form a subgroup
of F(X). Let CHG{(X) be the quotient of F{X) modulo
this subgroup, the so-callcd Chow group of zero cyddes
of the curve X, If Pe X then 1t defines an clement of
C H,(X) This is the Chern class of P Purther af f
generates J(), we see that the claws of P iy zero in
Cl{,(X) Conversely if the class of a pomnt P s zeroin
C Ho(X), then the point is defined by the vanihing of a

A
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single function. So to prove that a general point Pe X
is not a complete intersection, one needs only to show
that CHy(X)#0. This in general requires techniques
from projective geometry. The fact is that the curve X is
an elliptic curve and they have very large Chow groups.

A simiar definition can be made for any variety of
any dimension. If X is an arbitrary variety, define
C Hy(X) to be the quotient of F(X) by the subgroup
generated by elements I p_,vp(f), where f runs over all
non-zero functions on Y and Y runs over all curves on
X. It will follow by definition, that if a point is a
complete intersection then its Chern class is zero. The
converse 1§ true for affine varieties over C, a theorem
due to Murthy'®. The preof requires deep analysis of
what are known as vector bundies {(or projective modules)
over these varicties. The point I want to stress is that it
is such unifying general theories which ultimately pay
rich dividends.

Example 3.1: We will conclude this article by showing
that the Chow group of Y, the cubic surface we defined
earlier is zero.

First let us prove that the Chow group of a plane
curve of degree atmost two is zero. So let X = {f(x, y)=0}
be a plane curve and assume that deg f < 2. If deg f=1,
then f=0 1s a line and hence any point on X 1s defined
by the vanishing of one function. Thus by definition the
Chow group is zero. So let us assume that deg f=2. If f
is a product of two non-constant polynomals, then
both must be of degree 1 so that X is a union of two
lines and since any point on X must liec on one of these
lines we are done. So let us assume that f is irreducible.
Then by a change of variables, we can assume that
f=x*-—-g(y), where deg g < 2. Now again by a change
of variables, we can assume that f=x*—y if degg=1

and if deg g=2 then after a further change of variables
we can assume that f=xy—1. In either case if
P={a,b)e X, then it is the set of zeroes of the single
polynomial x—a. So the Chow group of X is zero.

Now let us go back to the cubic surface Y= {f=x*+
y*+2z3—1=0}. Let P=(a,b,c) be any point on ¥ We
will only treat the case when a+c¢#0 and b#1, the rest
of the cases being similar. Let 4 be chosen so that
a+d{b—1}+¢c=0. Consider the intersection, denoted
by X, of the plane x+d{y—1}+2=0 with Y. By choice,
Pe X. Substituting the expresston for z from the linear
equation, we get the equation g defining X in the (x, y)-
plane. Since f is cubic so 1s g. It is clear that
g(x,y)=(— 1 h(x,y), where h 13 of degree 2. Since
b#£1, PeC={h=0} c Y But the Chow group of C is
zere by the previous paragraph and hence the class of P
in the Chow group of Y is zero, Since P was an
arbitrary point we get that C Hy(Y)=0.

For a more detailed account with proofs of many of
the above discussions, the reader may see ref. 11.

1. Abhyankar, S. 8. and Moh, T. T, J. reine. angew. Math, 1975, 276,
148-1646,
Abhyarkar, 8. S., TIFR Lecture notes, Bombay, 1977, (Notes by
B. Singh)

o

3. Cowsik, R. C. and Non, M. V., Invent. Math., 1978, 45, 111-114.
4. Srimivas, V., Math. Ann., 1991, 289, 125-132.

3. Wagata, M., AMS Regiona! Conl. Ser. 1973, 37.

6. Suslin, A. A., Math. USSR — Izvestija, 1977, 11, 221-238 (English

translation).

7. Wnght, D, J. Pure Appl. Algebra, 1978, 12, 235-251,

8 Lang, 8., Algebra, Addison-Wesley, 1971. )

9. Ferrand, D., C. R. Acad. Sci. Paris, 1975, 284, 345-347.
10. Murthy, M. P, Bull. Am. Math. Soc., 1988, 19, 315-3[7.
11. Ohm, I, M. A. A. Studies in Mathematics (ed. Sexdenberg, A),

vol. 20, pp. 47-115.

Projective algebraic varieties

V. Srinivas

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400 005, India

1. Projective geometry

In their famous book Geometry and the Imagination,
Hilbert and Cohn-Vossen! describe projective geo-
metry as a study of ‘geometrical facts that can be
formulated and proved without any measurement or
comparison of distances or angles’. They give the

following example:
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... if a plane figure is projected from a point cnto another plane,
distances and angles are changed, and in additton, parallel lines may
be changed into lines that are not parallel; but certain essential
properties must nevertheless remain intact, since we could not
otherwise recogmze the projection as being a true picture of the
original figure.

To give a physical analogy, imagine the point of
projection as a light source, and the first planar figure
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