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single function. So to prove that a general point Pe X
is not a complete intersection, one needs only to show
that CHy(X)#0. This in general requires techniques
from projective geometry. The fact is that the curve X is
an elliptic curve and they have very large Chow groups.

A simiar definition can be made for any variety of
any dimension. If X is an arbitrary variety, define
C Hy(X) to be the quotient of F(X) by the subgroup
generated by elements I p_,vp(f), where f runs over all
non-zero functions on Y and Y runs over all curves on
X. It will follow by definition, that if a point is a
complete intersection then its Chern class is zero. The
converse 1§ true for affine varieties over C, a theorem
due to Murthy'®. The preof requires deep analysis of
what are known as vector bundies {(or projective modules)
over these varicties. The point I want to stress is that it
is such unifying general theories which ultimately pay
rich dividends.

Example 3.1: We will conclude this article by showing
that the Chow group of Y, the cubic surface we defined
earlier is zero.

First let us prove that the Chow group of a plane
curve of degree atmost two is zero. So let X = {f(x, y)=0}
be a plane curve and assume that deg f < 2. If deg f=1,
then f=0 1s a line and hence any point on X 1s defined
by the vanishing of one function. Thus by definition the
Chow group is zero. So let us assume that deg f=2. If f
is a product of two non-constant polynomals, then
both must be of degree 1 so that X is a union of two
lines and since any point on X must liec on one of these
lines we are done. So let us assume that f is irreducible.
Then by a change of variables, we can assume that
f=x*-—-g(y), where deg g < 2. Now again by a change
of variables, we can assume that f=x*—y if degg=1

and if deg g=2 then after a further change of variables
we can assume that f=xy—1. In either case if
P={a,b)e X, then it is the set of zeroes of the single
polynomial x—a. So the Chow group of X is zero.

Now let us go back to the cubic surface Y= {f=x*+
y*+2z3—1=0}. Let P=(a,b,c) be any point on ¥ We
will only treat the case when a+c¢#0 and b#1, the rest
of the cases being similar. Let 4 be chosen so that
a+d{b—1}+¢c=0. Consider the intersection, denoted
by X, of the plane x+d{y—1}+2=0 with Y. By choice,
Pe X. Substituting the expresston for z from the linear
equation, we get the equation g defining X in the (x, y)-
plane. Since f is cubic so 1s g. It is clear that
g(x,y)=(— 1 h(x,y), where h 13 of degree 2. Since
b#£1, PeC={h=0} c Y But the Chow group of C is
zere by the previous paragraph and hence the class of P
in the Chow group of Y is zero, Since P was an
arbitrary point we get that C Hy(Y)=0.

For a more detailed account with proofs of many of
the above discussions, the reader may see ref. 11.
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1. Projective geometry

In their famous book Geometry and the Imagination,
Hilbert and Cohn-Vossen! describe projective geo-
metry as a study of ‘geometrical facts that can be
formulated and proved without any measurement or
comparison of distances or angles’. They give the

following example:
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... if a plane figure is projected from a point cnto another plane,
distances and angles are changed, and in additton, parallel lines may
be changed into lines that are not parallel; but certain essential
properties must nevertheless remain intact, since we could not
otherwise recogmze the projection as being a true picture of the
original figure.

To give a physical analogy, imagine the point of
projection as a light source, and the first planar figure
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as the outline of some object; then the projected figure
15 its shadow on a wall. It 1s clear that problems of
perspective in drawing or painting contain the elements
of projective geometry.

A simple example of a result from projective
geometry i1s Desargues’ theorem. Two triangles {(in space)
are said to be in perspective if they ‘cast the same
shadow on a wall’, 1.e. have the same 1mage in a plane,
on projecting from a certain point P (called the centre
of perspective). Equivalently, tnangles A ABC and
O A'B'C’ are in perspective if the lines 44°, BB', CC’
have a point P in common (i.e. are concurrent).

Desargues’ theorem states that if two triangles are in

perepective, then the three pomnts of intersection of

corresponding pairs of sides, namely ABnNA'B,

BC nB'C’ and ACnA'C’, are collinear (i.e. lic on a
line). If the two triangles are not in the same plane, a bit
of thought will convince the reader that in fact the 3
pairs of corresponding sides meet at points which must
lic on the line of intersection of the two planes, and in
particular, the 3 points are collinear. The case when the
triangles are in a plane may be proved by a limiting
argument, or by showing that they are obtained by
projection from a pair of triangles in space which are
not in the same plane, but are in perspective,

Another old result is Pappus’ theorem, that if A, B, C
and A’, B’, C’ are two sets of 3'points lying on two lines
L, L' respectively, and L, L' meet at a point, then the 3

points of intersection AB ~A'B, BC' AB'C and

CA’ nC'A are collinear. Briancon's theorem states that
if a hexagon ABCDEF 1s circumscribed about a conic,

then the 3 ‘diagonals’ AD, BE and CF meet at 2 point.

2. The projective plane

In thinking about properties of plane figures preserved
under projection from a point cutside the plane, one
realizes quickly that the plane seems to have ‘missing
points’ which ‘reappear’ after the projection, while
certain other points ‘disappear’. To illustrate this, if P,
P’ are distinct planes in space, and O 1s a point outside
them, then the projection from P to P’ is the following
transformation: given a point Q of P, we associate to it

the point Q'=@0P', the point where the line
through O and (0 meets the planc P But this

L

‘association’ does not always work: a point @ of I* such

that the line OQ is parallel to the plane P docs not have
any point of P’ associated to it while a point Q" of P
such that O—Q' is parallel to P docs not come from any
point of P,

The idea needed to remedy this situation s suggested
by considering the above situations as himiling cascs.
Thus, if OQ is parallel to P, then Q is a iinu;t of o
sequence (), such that the hnes 0Q, meet 1™, a httle
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thought might convince the reader that the points

0,=00, NP ‘zo off 10 infinity’ in P’. The situation of
‘reappearing’ points is explained similarly.

In the last century, Poncelet defined the projective
plane by adding certain ‘ideal points’ which lie ‘at
infinfty’, according to the following rules.

1. Any affine (‘finite’) line 1s augmented by one point at
infinity; such an augmented line is called a projective
line.

2. Two affine lines are assigned the same point at
infinity precisely when they are parallel.

3. The points at infinity all lie on a projective line, the
‘line at infinity’.

Thus two affine lines (in the original ‘finite’ plane) are
parallel precisely if the corresponding augmented
projective lines meet at infimity. In the projective plane,
any two distinct lines meet at exactly 1 point.

One introduces ‘coordinates’ in the projective plane
as follows: a point P in the projective plane is
represented by three numbers (or rather an ordered
triplet), say (x, y, z), such that

(1) (x,y2)#(0,0,0)

(i1) (x,y,z} and (x',y',2") represent the same point
precisely when there 1s a non-zero number 4 such
that {x', y', 2"y =14x, Ay, A2).

These are calted homogeneous coordinates. The ‘finite’
affine plane consists of the subset where z #0; any point
P in this subset has exactly one representative set of
homogeneous coordinates of the form (x,y, 1); now we
regard the ordered pair (x, y) as the ‘usual’ (Cartesian)
coordinates of the ‘finit¢’ point P. The points with z=0
ar¢ the points at infinity,

A line in the Cartesian plane has an equation
ax+by+c=0 for some numbers a,b,c, where at least
one of a,b is non-zero; this may be regarded as
obtained by setting z=1 in the homogeneous equation
ax+by+cz=0. More generally, let f(x,»,:)=0 be a
homogeneous polynomial equation (of posttive degrec).
Then we can consider the projective curve of solutions
of this equation, defined as the sct of points P in the
projective plane such that for any set of representative
homogeneous coordinates (xg, yg.2o) for P, we have
[ (X0, Vo, 20} =0. This vanishing condition 1s unchanged if
we substitute a different (proportiondl) set of homo-
geneous coordinates, since f 18 a homogeneous poly-
nomial, so that f(Ax, Ay, 22)=A1f(x, v, 2). where d is the
degree of £ If we consider the curve given by a linear
cquation ax+ by +cz=0 where (o, MY #(0.0), then there
15 exaclly one point on this with z=8, which has
homouveneous coordinates (b, ~u, 01 Thus, such
projective ine is obtained from the ‘himte’ (whnek line
by adjoining 1 point at infinity. The line at infinity 15
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decfined by the hnear equation 2 =0, which has degree |,
and so we are justified in calling it a line.

A line in P? is determined by an ordered triplet of
coeflicients (u, b.¢), not all zero, such that proportional
triplets determine the same line. Thus, the lines in P?
are naturally parametrized by points of a projective
plane P2, called the dual projective plane. Thus, there is a
‘duahity’ between the projective plane and the ‘dual’
plane of hines, so that any assertion involving incidence
of points and lines in one plane is equivalent to a ‘dual’
assertion in the other plane. For example, the ‘dual’ of &
point P={x,.3, Zo) is the set of lines passing through P,
which forms a line in the dual projective space: the line
(@, b, c} passes through P precisely when ax,+ by +cz,
=0 which 1s a homogeneous linear relation between
a,b,c. The dual of Desargues theorem is its converse,
while the dual of Brniangon's theorem 1s Pascal’s theorem:
if a hexagon is inscribed in a conic, the 3 points of
intersection of opposite pairs of sides are collinear. The

relation of duality is explored in depth in the book of
Hilbert and Cohn-Vossen.

3. Projective varieties

More generally, we may define projective n-space,
denoted P”, using homogeneous coordinates, as the set
of (n+ 1)-tuples (x,, x,,...,x,), where at least one x; is
non-zero, and where proportional (n+ 1)-tuples repre-
sent the same point. The usual affine (or Euclidean) n-
space i1s the subset consisting of points where x,#0,
and a point with usual (Cartesian) coordinates {(a,,...,a,)
corresponds to the point with homogeneous coordinates
(@ys...,a,,1). More generally, projective n-space is the
union of n+1 subsets U;={x,#0}, i=0,...,n, each of
which is isomorphic to affine n-space. As in the case of
the plane, the hyperplanes in P" are again naturally
parametrized by a projective space P", the dual
projective space.

Again, given a finite collection of homogeneous
polynomials

fl (xﬂr"‘!xﬂ)!"'iﬁ(xﬂ!"'1xn)1

we can consider the subset V(f;,...,[,) of projective

space of points whose homogeneous coordinates satisly
the system of equations

Jilxg,.coyx )= =f(xg,...,x,)=0.

These vanishing conditions remain unchanged if we
replace the homogeneous coordinates by a proportional
set. A set which can be described in the form
V{fi,....f,) is called a projective algebraic variety {or
just projective variety). These are basic objects of study
in algebraic geometry. Note that if X< P" is a
projective variety, then it is the union of subsets X,=
XU, where X, c U, ~ A" is an afline variety. This
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reduces ‘local’ properties of a projective variety
{properties of the variety in a neighbourhood of a point)
to similar properties of afline varieties, considered in
Mohan Kumar's article (page 218, this issue), an
example of a local property is smoothness. Thus in a
sens¢, the importance of projective varieties stems from
their good ‘globdl’” properties.

From the description of the projective n-space in terms
of homogeneous coordinates, we see that it may be also
described as the set of lines through the origin in an
(n+ Lk-dimensional vector space. This is because any
such line consists of all vectors proportional to a non-
zero vector (xq,...,x,), which we call a generator of the
line; another non-zero vector is a generator of the same
line precisely when it has a proportional set of
coordinates.

The vector space which is underlying the above
discussion may be over any given field k; the
corresponding projective space is denoted P, if we
want to call attention to the field under consideration.
Examples for k are the real numbers R (when the vector
space 15 the usual Euclidean space), the complex
numbers C, the field of rational numbers Q, or the finite
[ield F, with g elements, where g is 2 power of a prime
number (any finite field must have a prime power
number of elements). A projective variety in P} is said
to be defined over k. The study of varieties defined over
Q or a finite field ¥, is equivalent to interesting
problems on Diophantine equations (in number theory);
see ref. 2 for an introduction. Notions from projective
geometry in fact often help shed new light on such
number theoretic problems. For example, one may
consider the Fermat curve of degree n, defined in P? by
x"+y"—z"=0. The still unproven assertion known as
Fermat's last theorem describes the set of points of Pf;,
on this curve (it says that if n > 3, there are no such
points all of whose coordinates are non-zero). Consi-
dered as a curve over the complex number field C, one
can show that its genus (we will discuss this notion
below) is {n—1)(n—2)/2, which is at least 2 if n is at
icast 4; a deep, general theorem of Faltings then implies
that there are only a finite number of points of P on
the Fermat curve.

Classically, one concentrated on the projective spaces
over the fhield C of complex numbers. In this case, each
complex line in C"*! meets the unit sphere $2"*! of
C*"™' in a circle. In particular, there is a surjective
mapping f: $*** 1~ P2 whose fibres are circles, which is
called the Hopf fibration. Since P¢ 18 the continuous
image of the compact space $***!, P2 is compact. Thus
a projective variety over C is a closed subset of a
compact space; hence any complex projective variety is
a compact topological space.

Since P¢ is the union of n+1 open subsets each
1s5omorphic to C*, P% is an »n-dimensional complex
manifold (hence has dimension 24 as a topological
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manifold). In particular, it makes sense to ask if a
complex projective variety X c Py is a complex
manifold in a neighbourhood of some point P; if this is
the case, we call P a smooth point (or non-singular point)
of X. If all points of X are smooth, 1e. X is a
submanifold of P, then X is called a non-singular
projective variety. These varieties are the principal
objects of study in projective geometry, since it is often
for these that one 1s able to obtain the deepest and
most beautiful results. The study of properties of a
more general variety X is often reduced to those of a
collection of auxilliary non-singular projective varieties
Y; associated (o X; thus a very important problem on
singular {1.e. non-smooth) varieties is that of resolution
of singularities, discussed in more detail in Abhyankar’s
article (see page 229, this tssue).

The problem of classifying smooth projective varie-
ties over C up to 1somorphism is one of the basic
problems on projective varicties, which has been the
subject of much old and recent research, including that
of the 1990 Fields medallist Mori; see ref. 3 for an
introduction to these ideas.

The projective space P 3 over the real numbers is also
a compact topological manifold of dimension n. Instead
of the Hopf fibration, one has a fibration S$"->P%,
which collapses (1.e. identifies} all pairs of antipodal
points of S”. The real projective spaces are important in
topology, in.particular, P3 is perhaps the simplest
compact, non-orientable surface without boundary. A
theorem i1n topology states that Pi 1s orientable
precisely when n is odd. The space PR is the
underlying manifold of the Lie group SO4(R)} of
rotations in Euclidean space R°.

4. Some examples

Example 4.1 Let X, be the subvariety of P2 defined
by the equation

filx,y,2)=x3+ >’ + 23+ Axyz=0,

where A is a constant, and x,y,z are the homogeneous
coordinates on P 2. Thus for each complex number 4,
X, 15 a plane cubic curve. Onc computes that if
A3# —27, then for each point Pe X, at lcast one of the
partial derivatives

o, of, o,
ox ' dy 0z

is non-zero at P. This implies that X, is non-singular. I{
3= ~27 then X; has 3 singular points (1,1, —3/4),
(1,0, —3w?/7), (1,w?, —3w/2), where o is a primitive
cube root of 1.

Note that for each 4, a ‘gencral’ fine intersects X, in 3
distinct points. This is a special case of Bezout's
theorem, discussed below.
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Example 4.2: Consider the mapping P{ —>P2 given
by (st)m (s3,5%,st%¢t%), where s,t are homogeneous
coordinates on P'. This is well defined, because
As, 8)=(4s, At) > (A°s3, A%, 43822, 2363y = 43 (53, s,
st2,1%). Let X « P? be the image,

X={(s,s%,st2,¢%)| s5,teC, and 5+#0 or t #£0}.

If x,y,z,w are the homogeneous coordinates in P3, we
se¢e that X 15 defined by the equations

fi=xw—yz=0, f,=xz—y*=0, fi=yw—2%2=0,

and further that any homogeneous polynomial vanishing
on X i1s a hinear combination f,g, +1,9,+ 594, where
the g, are homogeneous of the same degree. However,
X 1s also defined by the two equations

L=xz2—y*=0, wfi—zfy=2°—2yzw+xw?=0,

as one sees by considering the cases x#0, x=0
separately. This is analogous to the situation for afline
varieties described in Mohan Kumar’s article: X is a set
theoretic complete intersection In P%. Kronecker's
problem described there, for curves in A3, has an
analogue in P2: is every projective space curve a set
theoretic complete intersection? However, unlike in the
affine case, there 1s a topological restriction: we must
consider only connected curves in P2, since one can
prove that any set theoretic complete intersection curve
in P2 is connected. This is a special case of general
theorems relating the topology of a projective variety to
that of its hypersurface sections; such results are known
as Lefschetz theorems after S. Lefschetz, who first
obtained interesting results of this type.

From the parametric representation of X, or from the
above equations, one sees that a general plane in P3
intersects X in 3 distinct points. If X is any space curve,
we define its degree to be the number of points of
intersection with a general plane. It 15 not so easy to
guess the degree of a space curve {rom its set of defining
equations, as we see 1n the above example.

Example 4.3: The mapping PL—P2 in the above
example can be generalized as follows: for any positive
integers n, d let M,,..., My be the distinct monomials
of degree d in the n+1 vanables x,,..., X, Then there
is a mapping P*— PV, the Veronese embedding, given by
(Xgs eea X ) (My,..., My One can show that this
mapping is one-ope, and its mmage 18 3 smooth,
projective variety in PY, isomorphic to P*. The simplest
non-trivial example is when n=1, d=2, which embeds
I’' as a conic in % Under the Veronese embedding
=" given by monomials of degree d, the imvene image
of a hyperplane in PY is a hypersurface in B of depree
d, since it 1s the zero set of a hincar homogeneous
polynomial in Af,,..., M. which ts just 4 bomogencous
polynomial in x,,,..,x, of degree d Conmversely, every
homogeneous polynomial of degree d 1s obtained thi
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way. Hence the collection of hypersurfaces of degree 4
in P* 1s naturally isomorphic to the collection of
hyperplanes in P, which is just the dual projective
space P, Thus, the collection of hypersurfaces of a
fixed degree in P is itsell a projective space.

We also see that if X < P"is a hypersurface of degree
d, then P*— X is an afline vaniety, stnce 1t 1s 1somorphic
via the Veronese embedding to a closed subset of
PY—-H =~ A" for some hyperplane H.

Example 4.4: Let G(k,n) denote the set of A-
dimensional subspaces of C*. 1T k=1, G{l,n)=P""}, In
general, G(k.n) has a natural structure as a smooth
projective variety, the Grassmann variety (or Grass-
mannian). This is defined as follows.

If IV < C"is a A-dimensional subspace, then it has a
basis v,,...,t,, where v,={(a,,,...,4,) are vectors in "
which form a lincarly independent set. The linear
independence 1s equivalent to the statement that the
k x n matrix with rows v;, that 1s A=[a, ], has rank £,
1.e. has a non-zero {(maximal) k x k minor. lf we choose
another basis wy,...,w, of W, then w,=Z;b;;v; for an
invertible k x ¢ matrix B={5, ], and the new matrix 4’
so obtained, with rows w , is given by A= BA. Hence il
M s any maximal minor of A, and M the
corresponding minor of A’, then M =det (B}M. The
number of distinct maximal mmnors is the binomial

coellicient (3), so that if N={})~1, then the formula
F(W)=(M,,...,M)eP",

assigning to eacl subspace W the collection of the
maximal minors of an associated & X n matrix, gives a
well-defined mapping

F:G(k,n)-PV,

One can show that

(1) this mapping is one-one, i.e. if F(W,)=F(W,), then
W, =¥,

(i1} the image of F is a non-singular projective variety
in PV,

Hence F may be used to give G(k, n) the structure of a
projective variety. The mapping F 1s called the Pitcker
embedding, the above homogeneous coordinates on
G (k,n) are called Plicker coordinates. There is an
explicit description of the equations satisfied by G (k, n)
in P?. These are called —you guessed it—the Pliicher
equations! Fer detalls, see rel. 4 chapter L.

5. Intersection theory

Next, we touch on intersection theory. Some typical

problems solved using intersection theory are the
following.
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1. How many lines (i.e. linearly embedded P's) in P’
meet 4 given lines L,,..., L, which are in general
position? {Answer: 2)

2. How many lines are contained in a general smooth
cubic surface in P?? (Answer: 27)

3. How many conics in P? are simultancously tangent
to five given conics C,,...,Cs which are in general
position? {Answer: 3264)

4. How many lines are contained in a general
hypersurface of degree 5 in P*? {(Answer: an exercise
for the ambitious reader!)

The first non-trivial result in intersection theory is
Bezout's theorem, which states that if X, Y are distinct
irreducible plane curves of degrees m,n rtespectively,
then X and Y meet at exactly mn points, provided the
number of Intersections are counted ‘properly’. For
example, a ‘simple’ tangential intersection of two curves
counts twice, while in general, a point of intersection is
counted r times if there 1s an r-fold order of contact of
the curves. To make sense of this, one needs to defipe
the order of contact (or intersection multiplicity) of 2
curves at a point P; if x,y are local afline coordinates,
so that P 15 the origin, consider the smallest number of
monomials M,,...,M, in x,y such that if f(x,y}=0,
glx,y)=0 are the affine equations of the curves, then

any power series h(x,y) can be written as a linear
cambination

hix, y=alx, N N+b(x, Mgy + Y e, M,

for some power series a, b and constants ¢, (one can
prove that such a finite set of monomials exists). Then r
1s defined to be the intersection multiplicity of X and Y
at P. For example, the intersection multiplicity at the
origin of the curves y*—x*=0 and x%y+y3+x*=0Q is
7, since we can choose {1,x,x?%,x”, x%, y,xy} as the set of
monomials M, The somewhat subtle definition of
Intersection multiplicity 1s needed, as the reader can sce
from this example: there seems no ‘obvious’ reason why
7 is the correct value to assign to this intersection.

A simple application of Bezout’s theorem is to the
fellowing problem: if X = P? is a nonsingular plane
curve of degree d, how many tangents to X pass
through a general point PeP*? If X is defined by the
homogeneous polynomial equation F(x,y,z)=0, the
tangent to X at (a,b,¢) 1s Fyl(a,b,c) X+ Fyla,b,c)Y+
Fola,b,c)Z=0, where Fy, Fy, F; are the partial
derivatives. Let P=(xg, ¥y, 2,) and let Y be the curve
defined by the homogeneous polynomial equation
Fx(X,Y2yxo+ Fy(X, Y. Zyyo+ F, (X, Y, Z)z,=0. Then
the points of intersection of X and Y are precisely the
points of X whose tangent lines pass through P. By
Bezout’s theorem, there are d(d— 1) such points. Hence

d{d~1) tangents to X pass through a general point P
in the plane.
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In higher dimensions, if X is a vanety in P" of
dimension r, then a ‘general’ projective lincar subspace
L =~ P"7" intersects X 1n a certain fixed, finite number
of points, say d; then d is called the degree of X. The
generalization of Bezout’s theorem to P" states that if
Xy,...., X, are irreducible varieties in P" of dimensions
adding up to n, and of degrees d,,...,d, respectively,
such that X, n--- n X, consists of finitcly many potnts,
then the number of points of intersection (counted
properly) 1s the product d,4d, --- d,. Again, one needs to
define local intersection multiplicities suitably, but this
1s more subtle than in the case of plane curves.

More generally, there 1s a theory of intersection
multiplicities for defining intersection numbers of
appropriate subvarieties of any smooth, projective
variety. An interesting example is given by the Schubert
catculus, which 15 a sct of rules for computing
intersection numbers of certain special subvarieties of
Grassmanmians, now called Schubert cycles. In the last
century, Schubert had developed rules for computing
these intersection numbers, which seemed to give the
right answers in cases where the computations could be
done rigorously another way. One of the famous
Hilbert problems was to give a rigorous justification for
the Schubert calculus. All of the questions posed at the
beginning of this section can be reduced to Schubert
calculus; the last two problems would perhaps be
difficult to solve any other way.

There 1s a vast literature, both classical and modern,

on intersection theory, a comprehensive modern source
is Fulton’s book?.

6. Families of projective varieties

One example of a family of projective varieties 1s given
by the family of all projective linear subspaces P* in P,
which is just the Grassmannian G(k+ 1, n+4 1). We have
also scen In example 4.3 that the collection of all
hypersurfaces of a fixed degree in P" are naturally
parametrized by a projective space,

More generally, we may consider all subvarieties of a
fixed dimension 1 and degree d in P". Il X 1s such a
varicty, then for any r+1 ‘general’ hyperplanes
H,,...,H,, [, the intersection X, n-nH, ., Is
empty, since intersecting with each hyperplanc ought to
reduce the dimcnsion by 1. All (r+!)-tuples of
hyperplanes are paramectrized by the points of (I?)+?
=P" % ... x P* Let x,4,00,x;, be homogencous co-
ordinates on the ith fuctor I One can show that the
subset of (r+ 1)-tuples such that the intersection 1s non-
empty is the zero set in (P)*! of a polynomial
F(x; p,*+, X, 4., which is scparately homogeneous of
dearee d in each of the r+1 scts of n+ 1 variables; the
polynomial is determined by X up to a constant fuctor.
Thus the collection of all such subvanicties X s
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parametrized by the points in a certain subset of the
projective space constructed using the vector space of
such polynomials F. This subset is in fact a projective
variety, called the Chow variety.

The construction of the Chow variety 1s the
forerunner to the construction of other such families of
varietics, and ultimately, the moduli spaces parametriz-
ing isomorphism classes of varieties of a given type, like
the moduli space of curves of genus g mentioned earlier.
Moduli theory, particularly the moduli of vector
bundles, has been the object of study of several Indian
mathematicians, like M. S. Narasimhan, C. S. Seshadri,
S. Ramanan, and several of their students and co-
workers. Seshadri’s article® gives a nice overview of
modult theory.

The Chow variety and other similar varieties, notably
the Hilbert scheme defined by Grothendieck, lead to the
construction of variety structures on other sets. For
cxample, if X, Y are projective varietics, then the set
Hom (X, Y) of all morphisms from X to Y has a natural
structure as a variety; the idea is that if X x Y< P”, the
graph of a morphism {rom X to Yis a subvariety of P”
of a certain dimension and degree, hence determines a
point in a suitable Chow variety. If we fix the degree of
the graph, then we obtain a corresponding variety
Hom%X,Y); then Hom(X,Y) is the disjoint union of all
the Hom¥(X,Y). In particular, Hom(X,Y) is finite
dimensional in a neighbourhood of any morphism, which
1s 1n contrast to the situation for affine varietics. A
particular case is the variety Aut (X) of automorphisms
of a projective variety; it is a disjoint union of
(isomorphic) connected components, and the connected
component containing the identity morphism i1s an
algebraic group (a Lie group which is an algebraic
variety). For example, Aut (P¢) is the algebraic group
PGL,, (CO)=GL,,,(C)/(scalar matrices), called the
projective linear group.

In contrast, as observed in Mohan Kumar’s article,
the structure of the automorphism group of even the
affine plane is very complicated; in particular, it is
‘infinite dimensional’.

7. Complex projective varieties

Projective varietics over the ficld C of complex numbers
have certain remarkable  topotogical and  analytic
propertics, which we bricfly discuss here, The book® of
Grifliths and Narris develops alpebraie geometry from
this perspective, and the reader can find  detailed
explanations there,

First, we mention a result of Chow, which generalizes
a fact known carlier for Riemann surfaces. IV < PP s
a smooth projective variely, so that 1t s complex
mandold I a2 npatural way, then one cun dehae
meromorphic functions on Y an the sense of complex

""I':I-"lI
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analysts; these are functions which can be locally
expressed as ratios of analytic functions. Chow's
theorem states that any meromorphic function on X is
in fact @ rational function, ie. a ratio of homogencous
polynomials of the same degree. This has been
generalized by Serre’ into a principle, usually referred to
as GAQGA (from the title of Serre’s paper), that (loosely
speaking) states that any ‘global analytic object” defined
on a complex projective variety X 1s in fact algebraic.
For example, any complex submanifold of a smooth
projective variety X 1s an algebraic subvariety, any
analytic mapping between complex projective vanetics
1s a morphism of algebraic varieti¢s; any holomorphic
differential form on X is an algebraic diferential form
fa polynomial differential form on each affine open
subset of X in the sense considered in Mohan Kumar's
article). any analytic vector bundle on X 15 algebraic.
The second general property relates to the so-called
cohomology groups of a smooth projective variety; again
this generahzes results which go back to the work of
Riemann related to the Dirichlet principle. Recall that
on a manifold M of dimension n, a (complex)
differential r~form @ is an object (actually, a skew-
symmetric tensor) locally defined by an expression

w= 3

L J—,

ffllz...l,dtll ARSA dxi,’

where x,,...,x, ar¢ local coordinates, and the coeffi-
cients f, .., are complex valued functions (differentiable
t0 any order); the ‘wedge product A is skew-
symmeltnic, and the dx; transform under a change of

: cy; :

coordinates by the rule dy, =) jg—i—dxj. A O-form 1s
)

Just a function. If Q (M) is the C-vector space of r-

forms, there is an operation d: Q' (M)-=Q*+ 1 (M), called

exterior differentiation, given by the rules

dw; +w,}=dw, +dw,, df = ) —é{-dxi if £1s a function
i=10X;

and
dlo; A wy))=(do ) A w,+ (- 1Y 0, A do,

if w, is an r-iorm. Ag r-form w is called closed i dw=10;
it is called exact if w=dy for an (r—1)-form n One
computes from the definitions that d{d(m)=0 for any
form g, so that exact forms are closed. The rth
cohomology group of a manifold M is defined as the

quotient space

closed r-forms

4 ﬂ, C =
H'(M, €) exact r-forms

If M is compact, then one knows that H"(M.C) is a
finite dimensional C-vector space, whose dimension is
called the rth Betti number of X, denoted by b,(X).
Thus if b,(X)=s, we can find s closed r-forms ,,..., w,
such that for any closed r-form w, there are unique
complex constants ¢; such that w—Z, ¢, w, 1s exact.

Riemann showed that if X is (in present terminology)
a compact Riemann surface of genus g (ic. topologi-
cally, X is a g-holed torus), then X has g linearly
independent holomorphic l-forms, and these forms and
their complex conjugates give a basis for the first
cohomology group H!'(X,C). Of course, Riemann did
not use the language of cohomology, which was
invented later.

This was generalized by Hodge, as follows. If X is a
complex projective variety, the cohomology groups
H™ (X, C) have a decomposition into C-subspaces

HX,.Q=H""®H " "1&..0H,

where H"? is the vector space of holomorphic 7-forms,
and the remaining H“/ have a similar description in
terms of ‘harmonic’ forms. There is a natural complex
conjugation on H" (X, C) (since the exterior derivative is
a real diffcrential operator), and the decomposition has
the property that H*"~'=H""%* In particular, H""
and H'™"' have the same dimension, For example, this
means that the odd Betti numbers of a complex
projective variety are even. The decomposition is called
the Hodge decomposition, and the study of related
properties of varieties s called Hodge theory. Originally,
this was done for smooth projective varieties, but an
extension to arbitrary varieties (called ‘mixed” Hodge

theory) has been given by Deligne, using resolution of
singularties.
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