GENERAL ARTICLES

Shannon’s Sampling Theorem

Maurice Dodson

The Sampling Theorem is one of the key results in communication theory, giving a representation of a
bandlimited analogue signal as a sum of terms involving the values (samples) of the signal taken ar
the Nyquist rate (twice the maximal frequency of the signal). In his fundamental and definitive
framework for information theory, Shannon used the Sampling Theorem to establish the theoretical
equivalence of analogue and digital signals. Later with the advent of extremely fast digital
computers, the theorem served as a basis of efficient practical techniques for digital/analogue
conversion, vital in modern communication systems. In essence, the theorem was first proved in
interpolation theory and is closely related to a wide range of other results in mathematics. The
sampling rate specified in the Sampling Theorem is crucial and for lowpass signals must exceed the
Nyquist rate in order to prevent ‘aliasing’; higher rates also lead to smaller errors in
digital/analogue conversion. For multiband signals with spectra consisting of more than one
Jrequency band, lower sampling rates which still prevent aliasing can be achieved if chosen

appropriately.

Introduction

MODERN communication systems depend upon the
equivalence of continuous and digital signals. This
might appear surprising since it would scem that a
continuous signal which has a value for each real
number could always contain more information than a
discrete signal with values limited to discrete points.
The key to this equivalence is the Sampling Theorem,
widely associated with Claude Shannon'? who laid
down the foundations of information theory in three
classic papers published in 1948-49. A recent article on
Shannon patnts an attractive picture of an inventive
and irreverent yet modest character”.

The significance of Shannon’s ideas was recognized
by both engineers and mathematicians who placed his
work on a more secure and rigorous footing (see, for
example ref. 4). To set the context of the Sampling
Theorem, we will begin with a brief description of a
general representation of a communication system.
Further detaills can be found in any introductory
account of information theory. Shannon’s original 1948
papers, which are clcar and accessible, are as good a
source as any and are in the book® by Shannon and
Weaver but a more up-to-date account is given in ref., 6.

Communication systems and signals

Shannon’s analysis began with a very general defimition
of a communication system, which he described as
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consisting of five elements:

(1} An information source. This might be a voice, a
physical reading such as temperature or voltage, or
a keyboard.

(2} A transmitter. This converts the message to a signal
switable for transmission. A voice might be
converted into electrical impulses and transmitted
by wire or radio.

(3) A channel This is the medium of the message and
might be a wire or a band of frequencies.

(4) The recerver. This receives the signal and converts it
back to the original message, in practice never
exactly.

(5) The destination. The person (e.g. listener) or device
for which the message was intended.

The information from the source might consist of a
sequence of discrete symbols, such as Ictters from an
alphabct, or might be a continuous reading such as a
voltage, temperature or pressure. A continuous signal is
called analogue. The means of transmitting the message
can also be discrete (e semaphore) or analogue (e.g. o
current in a wire), though 1 practico it 1s usually the
latter,

In his analysis, Shannon used & Quantitative measure
of informattion dernved from the observation that a
discrete message can be regarded as a selection from a
finite set of symbols. For instance an Pnglish word iy
made up from an alphabet of 26 letters (plus a space).
More simply but just as pencradly a message can be
constdered to be made up of a string of s and 1y, or
bits (from biaary digits), These were used to make
precise the idea of information content and tu establish
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fundamental results on redundancy, the ‘entropy’ of a
message, source structure, notse and channel capacity.
1t is worth mentioning Shannon's counterintuitive
seccond fundamental theorem that noise fimits the rate
of transmission but not the accuracy of a message. The
references cited above give more details.

Discrete and analogue signals

Although the theory Shannon developed applied to
discrete sequences essentially consisting of a stream of
(s and I's, most signals are analogue. For example,
since they are continuous, speech, radio and television
transmissions are analogue signals. Analogue signals
are made up of waves of vanous f{requencies, for
example sound consists of compression waves and
radio and television of electromagnetic waves, The
frequencies and their amplitudes which make up a
signal are called the spectrum. In the case of adult male
speech the frequencies in the spectrum are in the range
of 0 to 8000 cycles per second (or 8 kH). Communication
engineers take signals to be real square-integrable
functions (i.e. in mathematical terminology, they lie n
L*{R), where Rdenotes the set of real numbers),
corresponding to their having finite energy’. This places
the study of signals firmly into the reaim of Fourier
analysis, for instance the Fourier transform of a signal
is its spectrum. We shall be concerned with the classical
theory of analogue or continuous deterministic signals,
which are a subspace of LZ(R). Non-deterministic
signals such as nois¢ can stll be treated within a
Fourier analysis setting but we shall not say much
about this important development (pioneered by
Norbert Wiener),

Although natural and highly effective, modelling
analogue signals using L*(R) and Fourier analysis
carries a paradox within it. The frequency components
{assumed to be sinusoidal) of a physical signal are
generated by vocal chords {for speech), a string (for a
violin) or an oscillator (for an electrical signal) which
cannot vibrate above some finite Iimit. Thus” it seems
reasonable to assume that the frequencies of analogue
sipnals are bounded. Engineers call such signals
bandiimited and assume that they have a maximum
frequency {strictly speaking the bounded spectrum will
only have a supremum or least upper bound rather
than a maximum but this distinction is irrelevant in
practice). On the other hand, it is equally reasonable to
assume that signals start and stop within a finite time,
i.e. are timelimited and usually engineers treat signals as
being limited to times t with |t| <T/2 and with no
frequencies greater than W, However it turns out that
in the Fcourter analysis framework, the only signal
which is both bandlimited and timehmited is the zero
signal. Although the Fourier analysis framework is used
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in an essential way in sampling and other ar¢as, this
paradox does not seem to cause any trouble. Later we
will touch on ways of resolving it,

In order to extend his resulis for (time) discrete
signals to analogue ones, Shannon assumed that
bandlimited analogue signals can be regarded as
approximately timelimited as well and used the
Sampling Theorem to deduce that communicaling
information can in effect be treated as a discrete
process. This is one of the key results in Shannon’s
paper? since it enabled him to analyse analogue signals
in terms of approximately eguivalent discrete signals
which formed a finite dimensional space.

The Sampling Theorem

The Sampling Theorem tells us that an analogue signal
with maximum frequency W is determined by its values
(samples) taken every 1/2W sec. [n Shannon’s words
this was ‘a fact which 15 common knowledge in the
communication ait’, a revealing comment on the
mathematical state of the subject at that time. The
intuitive justification was that an analogue signal with
maximum irequency W cannot vary substantially in a
time interval less than one half a cycle, ie. in 1/2 Wsec.
This had been recognized since the 1920s but the
Sampling Theorem establishes more. [t provides a
formula which expresses a signai in terms of the discrete
values or samples taken every 1/2 Wsec, where W is the
maximum frequency of the signal. The formula for a
signal f{(t) is:

=231 (1)

keZ

k \sinm{2Wi— k)

2W ) n(AWt—k)

where Z is the set of integers. Evidently the signal f(1)
at the time t ¢an be reconstructed from the values
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of the signal at discrete points ---, —12W, —1/W,0,12W,
1/W,3/2W,---. This corresponds to a sampling rate of 2%,
twice the maximum frequency of the signal, and is often
called the Nyguist rare. The formula (1), which was
already known in mathematics (see next section), can be

regarded as a sum of translated and weighted functions
of the type

Sin 2:&:_1}’1’
2nt

which is 1 when t=0 and vanishes when t=Kk/2 1,
where k 1S a non-zero integer {see Figure 1).

In fact the practical sigmficance of (1} for radio
communication was discovered in 1933 by a Russian,
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Figure 1. The graph of sin (2nW#1/2nW¥1); the zeros are at the points
K2W, k#0.

V. A. Kotel'nikov® (who retired in 1990). In Eastern
Europe and the former USSR, the Sampling Theorem 1s
named after him. A little later, in 1939, a German,
Raabe® published a paper on the Sampling Theorem in
communication. It is remarkable that two other papers
on its application to communicatinn theory were
published independently in the same year (1949) as
Shannon’s paper (which was submitted for publication
in 1940 but did not appear until after World War 1I)—
one by a Briton, Weston'®, and the other by a Japanese,
1. Someya*'. Thus although he was by no means the
first to prove the theorem (he himself gave a reference
to a book'? on interpolation theory written by J. M.
Whittaker, a son of E. T. Whittaker), Shannon was the
first to appreciate the general significance of the
Sampling Theorem for tnformation theory. Consequently
in the West the result 1s usually known by his name,
though the name Whittaker—Kotel'nikov—Shannon
Theorem is becoming more common.

It should be pointed out that there 1s a drawback to
the {formula (1). The function f given by (1) can be
extended to the complex plane by replacing t with the
complex number t+iu. It turps out that this extended
complex function is entire, 1.¢. analytic throughout the
complex plane. Analyticity 1s a ‘rigid’ property in the
sense that an analytic function is determined by its
values on a set with an accumulation point, such as an
mterval. In particular a timelimited and bandhimited
signal must be identically zero since such a signal
vanishes for all sufficiently large times and hence for all
time. This is why the only stmultancously time and
bandlimited signal is the zero signal. This puradox s
closely related to Heisenberg’s uncertainty principle in
quantum mecchanics!? 712,

One way out of this dilemma is to drop the
assumption that the signal 15 square-integrable and
bandlimited and assume instead that the signal and its
spectrum {Fourier transform) are integrable. It then
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follows that an error term must be added to equation
(1) to give an asymptotic formula'®. Another approach
is to accept that a bandlimited signal cannot vanish
outside any {inite interval (although it will be negligible
for times outside the interval (— 772, T/2) when T is
large) and to work with signals which are concentrated
on (— T/2,T/2). Indeed since physical measurements of
a signal are never exact and its mathematical
properties, such as continuity, cannot be settled by
observation, this is very reasonable. It is a remarkable
fact that the prolate spheroidal wave functions (suitably
scaled) form a complete orthonormal basis for L*(R)
and are concentrated on (— 7/2, T/2). Moreover their
restrictions to (—7/2,7/2) are still orthogonal and
complete for the space of signals time hmited to
(—7/2,T/2). A full discussion, which involves an
appreciation of the relationship between physical reality
and mathematical models, is given in refs. 7, 13, 14 and
will not be pursued here.

As well as the Sampling Theorem, the paper?
contains a wealth of imaginative geometric ideas
applied to signals of finite time duration 7. As has been
just pointed out, a signal cannot in fact be
simultaneously of finite duration 7 and have spectrum
bounded by W say. Nevertheless, Shannon observed
that this approximation allows a signal to be spccified
by 2T W values and went on to develop an illuminating
geometrical approach to communication theory by
representing a given signal as a point.in a 2T W-
dimenstonal vector space of all possible signals. From
this geometric point of view, the transmitter 1s then a
mapping from the space of messages to the approxi-
mately 2T W dimensional signal space and the receiver
a mapping from signal space back to the message space.
Shannon pictured the effects of noise as producing
distorted messages lying inside a sphere centred at the
point representing the received message. There is a
rigorous version of the 271 theorem which uses the
prolate spheroidal wave functions to make Shannon’s
approximate statement precise; the space is of dimen-
ston 2T W+ (T W) for large T (refs. 13, 14),

Later, Shannon? even raised the possibility of the
efficient storing of messages by means of space-filhing
curves, usually regarded as a mathematical oddity of
little practical signtficance. However, as Shannon
himself pointed out, very slight errors in storing the
message could result i major ¢rrors in its reconstruction.
He also ebserved that the sumples Jdo not have 1o be
taken at regular intervals and that o signal can be
determined by choices other than s own vilues. For
instance, the values of the signal and its dernative
taken at half the Nyquist rate would serve.

With the advent of extremicly fast digital computing
m the seventies, the Sumpling Theorem has assumed an
even greater importinee i appheations. Besides being
fundamental o information  theory, the Sampling
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Theorem has applications in many other areas,
including communications engineening, optics, spectro-
scopy and prediction theory (an extensive hst is given in
the comprehensive sunvey article!’), and above all in
electronics and signal processing, where it underlies
pulse amplitude and code modulation techniques for
analoguc,/digital signal conversion. There is a nice
application to X-ray crystallography, where the
properties of reciprocal space are reflected in the
quantity 1217 being the rectprocal of the length of the
interval { — 1, W) (ref. 18). '

In applied mathematics, the Sampling Theorem is
used in a variety of problems, including nuclear
scattering, heat transfer and geperal discrete transforms
(ref. 17, $D). Applications in pure mathematics, such as
in interpolation theory, are to be expected and will be
discussed in the next section. However this is an
appropriate point to mention that there is a version of
the Sampling Theorem mentioned by Shannon? in
which the samples are the values fik/W) and the values
f'{k/W) ol the derivative at the points k/W, ke Z. This
result has applications in analysis and number theory'®,

There are stochastic versions of the Sampling
Theorem which apply to non-deterministic signals?? 2%,
Lioyd*! gives a more general result in which the
interval (— W, W) is replaced by a set A satisfying a
disjoint transiates condition.

Mathematical origins of the Sampling Theorem

The Samphing Theorem has a tangled history going back
to the late nineteenth century, a decade after Hertz had
produced radio waves in the laboratory (1887). Neither
Hertz’s successful experiments nor Maxwell's earlier
prediction in 1877 of radio waves on the basis of his
equations for electromagnetism appear to have had any
influence on the original discovery, in mathematics, of
the Sampling Theorem. It appears to have been
discovered first by a French mathematician, Borel, in
1837 and independently later in 1910 by a Briton,
Whipple, who never published it. Other famous names
associated with the result are Hadamard and de la
Vallée Poussin; more details are given in a very
readable survey article??, The first published proof was
by Whittaker?® in 19185, from the point of view of the
mathematical theory of interpolation. In the Sampling
Theorem, the object is to recover or reconstruct a signal
or function with known maximum frequency from
samplies of values. On the other hand, in interpolation
there 1s generally not such a restriction in the particular
type (such as polynomials, analytic functions, etc.) of a
function which 1akes on given values or data at
specified points. Whittaker produced the function (1)
which interpolated given values at equally spaced
points and which was {ree of ‘rapid oscillations’. This
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function, called the cardinal series, is as has been
pointed out analytic and so very well behaved. It is
mteresting that over 73 years ago Whittaker thought
that because of its nice properties, the cardinal series
might be of use to applied mathematicians who
for long past have complained that pure
mathematics is daily becoming more compli-
cated and harder to understand. This
complaint refers chieflly to the increased
rigour with which the theories of analysis
are now expounded, and which is closely
connected with the extension of knowledge
regarding discontinuities, singularities, and
other phenomena of which the older mathe-
matics took no account. Indeed, the modern
theory of functions of a real variable is
concerned largely with cases in which the
distribution of fluctuations and singulanties
transcends all intuitive or geometrical re-
presentation.

The theorem has connections with other areas of
mathematical analysis, above all in Fourier analysis
and complex function theory. For example, one half of
the Paley-Wiener Theorem asserts that if the Fourier
transform f of a function £ R - C vanishes for |w| > W
then f can be extended to an entire function {i.e. one
which has no poles in the complex plane C). Hardy?*
called these Paley— Wiener functions and showed that
they formed a subspace (a Paley— Wiener space) of the
Hilbert space L*(R) of square integrable functions.
This space plays an important part in making some of
Shannon’s ideas rigorous (sce refs. 13, 14). By their very
nature, Paley—Wiener functions can be regarded as
bandhmited analogue signals and so have a represen-
tation by Whittaker’s cardinal series as in (1).

The results hinge on the family

sinx(2Wt~k)
n(2We—-k)

kel,

being a complete orthonormal basis for the subspace.
This relates the Sampling Theorem to the Riesz—Fischer
Theorem since the Sampling Theorem can be interpreted
as saying that the space L*{[—1/2,1/2]) of square
integrable functions on [—1/2,1/2] is tsometric to the
space 7 * of square summable sequences. The Sampling
Theorem 18 also equivalent to some fundamental results
in analyss, such as the Poisson summation formula, the
Cauchy integral formula and the duality between the
circle group and the group of integers. Consequently
the Sampling Theorem 1is related to many classical
resuits in mathematics*®?>. However it should be
pointed out that the slow rate of convergence of the
Cardinal series in (1) makes the Sampling Theorem less
useful in numerical analysis,
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The proof of the Sampling Theorem

The proof in Shannon’s paper? relies on the fact that a
periodic function g with period 2W has a representation
as a Fourier series, i.e. as an infinite sum of the form

g(x}= Z Ckemkxfw'
ke Z

(2)
The constants ¢, depend on the function g and are called
the Fourier coefficients of g. The essence of the proof is
that the signal shown 1n Figure 2a has spectrum
confined to the interval (-W, W) (Figure 2b). This
spectrum is repeated on the intervals QkW-W,2kW+ W)
for k= +1, +2,--- along the real axis {see Figure 2¢).

Another way of looking at this is to think of the
spectrum being translated by 2W again and again to
the left and right, filling the whole ling with (non-
overlapping) copies of the spectrum. This spectrum
repetition in the frequency domain gives a periedic
function which can be represented by a Fourler series
and so determined by the Fourier coefficients ¢, =f(k/2W)
in the series (2) (see Figure 2d).

Now since the periodic function can be reconstructed
from a knowledge of the coefficients ¢, these
coefficients can equally be regarded as determining the
periodic function. In other words in Figure 2, you can
go from (d) to (c). It turns out that the discrete Fourner
coefficients for g in (2) are given by ¢, =f(k/2W) (the
denominator in f(k/2W) arises from the period of g
being 21 instead of the more usual 1). Hence the ¢, lie
on the original signal which can thus be recovered by
removing the repetitions by filtering out the added

A
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frequencies to regain the original spectrum. In other
words, in Figure 2 you can go from (d) back to (a} via
(¢} and (b}, and so recover the original signal from the
samples.

Another way of looking at this is to regard the
sequence of samples in (d) as in effect a stream of
impulses weighted by the sample values f(k/21) which
is passed through the filter which removes frequencies
above W to give the value of f(¢) of the signal at the
time t. This process can be expressed by the formula

sin 2n W't
2nW't

=S fHRAWISE—k2W)*

k> = o

(3)

(Interpreted appropriately, this is essentially the same
equation as (1).)

Implementation

Although engincering in spirit, the proof that Shannon
gave cannot be implemented exactly in practice for
analogue signals. There are two reasons for this. First,
the samples (Fourier coefficients) in the theory are
perfect impulses {weighted delta functions) which do not
exist physically. Secondly, ‘quantization’ errors associ-
ated with digitizing the sample values cannot be
avoided, although they can be made very small. They
arise when a signal value such as a voltage can only be
measured 1o, say, the nearest 1/10th of a volt
Nevertheless despite these limitations, there 1s an
effective and widely used technique based on Shannon'’s
proof for reconstructing analogue signals.

YA

(a) Original signal

o i ]

Ll‘l |

r_

[Tl

{d) Sequence of samplos

—l

Fourier Transform

® Iinverse Founer Transiom

{b) Spectrum

{c} Spectral Repetition

Figure 2. A disgrammatic proof of the Shainon Samphing Theorom.
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Digital to analogue conyersion

Digital information is often put into analogue form by
means of the ‘sample and hold’ technique. In this 2-
stage technique, samples of the signal are first taken at
regular intervals from computer memory, a disk or
directly from the signal itself. The value of each sample
is then held untl the next one 1s read. To make matters
mare precise. let s denote the time between successive
instants at which the samples are taken. Then the value
f(sk) of the signal f at the instant sk is held until the
next sampling point (s+ 1)k after which the next value
f{{s+ 1)A) is held (sce Figure 3} Mathematically this
signal b(r} say can be written

b= 3, SKont=R)= 3 SR L s O

= ~x L=
(4)

where for any set A4, y,{t)=1 when te4 and 0
otherwise (x, is the characteristic or indicator function
of the set A4). This function is somefimes called a
‘hoxcar’ signal (because of a resemblance to the profile
of a US freight train) or sometimes a ‘staircase’ signal.
Providing the sampling interval s is less than one half
the reciprocal of the maximum frequency {as required in
the WKS theorem), the boxcar signal has the same
energy as the original signal.

The boxcar signal {(4) is an approximation to the
idealized representation in (3) of function f{t) as the
output of filtering a stream of weighted impulses,
Actually, the boxcar signal is itself also only an
idealization since it cannot be realized exactly, partly
because the changes in the values of the samples will
not be instantancous and partly because of the
‘quantization’ errors already mentioned.

In the second stage, the boxcar signal formed from

|

. _ T e P il—

-
il
i =™

Y,
./
N/

ey Sy i

Figure 3. The original sigral is shown by the dashed curve, the
boxcar signal 1s (ormed by the "sample and hold’ technigue. The
heavy solid curve is the output after fittering the boxecar signal. The
differences beiween the oniginal and reconstrucied cuitves are greatest
ngdr [UIming points,
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the discrete wvalues of the dimtal mformation s
smoothed by filtering out the high frequencics. When
an analogue signal is being reconstructed from a boxcar
signal in this way, frequencies above the maximum
frequency of the origiaal signal are filtered out. Energy
is lost in the process and it turns out that more energy
is lost in the high frequencies than the low, causing the
reconstructed signal to be distorted. The difference
between this signal and the original depends on the size
of the sampling interval s. The smaller s the more
accurate the reconstruction. In fact when s 1s small
(s< 1/2W) the error is proportional to about s, so that
doubling the sampling rate (or halving the time
interval) approximately quadruples the accuracy. Since
s must be less than 1/2W, the Sampling Theorem gives
an indication of just how small s needs to be to ensure
good reconstruction from the signal. In addition, the
sampling rate of 2W {(the Nyquist rate} given by the
Sampling Theorem prevents aliasing, discussed below.
In practice sampling is carried out at a higher rate
than the Nyquist rate. For example the sampling rate
for compact discs is about 44 kHz {corresponding to the
sampling interval s being about 1/44000th of a second).
This is a little above the Nyquist rate for audio
reconstruction since the upper limit of frequencies for
conventional musical instruments is about 20 kHz.

Oversampling

Although ideally the Sampling Theorem implies that
sampling above the Nyquist rate is unnecessary, the
approximate reconstruction used in practice meant that
higher rates are often used. In fact sampiing at a rate
considerably higher than the Nyqust rate or over-
sampling can pay dividends in several ways. It is
used in some high fidelity compact disc players to
avoid aliasing problems (see next section) associ-
ated with ‘real’ filters which do not cut off higher
frequencies perfectly (refs. 26, 27, ch. 2). Three or
seven additional samples are interpolated between
successive samples being read off the disc, thus
increasing the sampling rate 4 or 8-fold. This not only
reduces errors of the kind just described but also
improves other aspects of filter performance and allows
tracking errors to be corrected.

Undersampling and aliasing

If a signal is sampled at less than the Nyquist ratec or
undersampled, then the resuiting spectrum repetition
the frequency domain consists of translates of the
spectrum which now overlap. As a result, high
frequencies can appear as low frequencies. This effect is
called ‘aliasing’ and can often be seen on lilms when
rapidly moving wagon wheels appear to have slowly
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revolving spokes. Stroboscopic lighting can actually
exploit_ aliasing by apparently freezing rapid but
repetitive motion. Because of the high frequencies
masquerading as low [requencies, aliasing causes
distortion in the reconstructed signal. Using the
Nyquist rate (which is needed for the Sampling
Theorem) guarantees that undersampling and hence
ahasing will not occur.

Signal types

The bandlimited signals considered here fall nto
different types. Signals, such as speech, which have a
spectrum consisting of a single band about the ongin,
with no gaps, are called lowpass. For purposes of
transmission, radic and television frequencies are
confined to a band centred about a high-frequency
carrier wave. This type of signal is called bandpass.
Signals which have spectra made up of several distinct
bands such as that in Figure 4 are called muitiband and
are of increasing importance, for example they have
been used in speech compression systems?®,

It is evident that their maximum frequency can be
much greater than the total length of the bands making
up the spectrum, whereas for a lowpass signal with
maximum frequency W, the Nyquist rate of 2W is
precisely the length 2W of the nterval (~ W, W) of
frequencies in the spectrum, Now it 15 this total length
(or measure) of the frequency bands which is really
fundamental in communication theory. Indeed in a
remarkable paper Landaa?® proved that a signal could
not be reconstructed stably from samples taken at a
rate less than the measure of the support of the
spectrum (length of the spectral bands) (‘stably’ means
that small errors in the samples result in a signal close

AA

Lowpass spectrum

Bancpass spectum

A Aln N

Muitbynd spectrum

Lipure 4, [hflerent types of spectia,
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to the original). Of course a multiband signal can
always be reconstructed from samples taken at the
Nyquist rate of 2W. This can be inefficient but thereis
an extension of the Sampling Theorem which can take
advantage of the gaps in the spectrum to give lower
sampling rates at the cost of a more complicated
reconstruction®?,

It is a common practice to use higher, sometimes
much higher sampling rates than the Nyquist rate, in
order to avoid aliasing and to reduce attenuation
caused by filtering. An awkward feature of muitiband
signals is that apparently reasonable choices of the
sampling rate can lead to aliasing®!. This means that
for multiband signals care should be exercised in
applying standard techniques appropriate to lowpass
signals. For example, simply increasing the sampling
rate will not necessarily prevent aliasing. The complete
picture of which sampling rates will prevent ahasing
and which wen’t depend on the spectral structure in a
quite complicated way. But for multiband signals of a
somewhat special type, with equally wide bands centred
at the harmonics of a carrier frequency, the distribution
of available sampling rates can be determined. Figure 5
shows sampling rate plotted against band separation
with the available rates shown hatched; the rates in the
‘bad’ regions in between cause altasing. It can be seen
that hitting upon a reasonably small ‘good’ sampling
rate lying in a hatched sector by chance 15 not very
likely and so it is important to know the spectral
structure, |

Incidentally the figure is reminiscent of sets which
arise in dynamical systems (such as the soldr system)
and which are associated with instability or chaos.
There is a good reason for this. A sampling rate in a
‘bad’ region corresponds to a point which is ‘close’ to a
rational with a small denominator. Integrally related
quantities can cause resonance in a physical system, so
that points close, to rationals in this sense are ‘near-
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resonant” and can be associated with instability (e.g.
vibration in & mechanical system). The ‘*closeness’ of
points tQ being rational 1s studied in Diophanting
approximation, 3 branch of number theory. Thus as
well as close connections with analysts, the Samphng
Theorem has bnks with number theory and dynamical
systems.

Conclusion

The Sampling Theorem was the key for extending
results for discrete to analogue signals. It also provides
apprapriate samphng rates or channel widths for
techniques used throughout signal processing. Moreover,
although the Sampling Theorem cannot be implemented
in ¢xact mathematical form in electronic systems, there
is a very simple and effective practical approximation
which is very accurate for lowpass signals. Thus from
both a theoretical and practical standpoint, the
Sampling Theorem is a cornerstone of communication
theory and engineering. As a bonus, it also lies at the
heart of much mathematics.
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