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Fascination of non-Newtonian fluids
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Polymer solutions and melts, suspensions and many
oither structured f{luids exhibit flow behaviour, that is
rather bizarre and complex. The dramatic differences in
the behaviour of normal fluids and such complex fluids
are first described by examples. A continuum mechanics
approach to formulate constitutive equations to explain
this complex behaviour is presented. This is followed by a
brief outline of the molecular modelling approach, both
through the kinetic theory and the reptation models.
Some illustrations on how and where such models can be
used are given.

The complexities in handling the flows of non-
Newtonian fluids have been explained by selecting three
different areas, Instabilities in viscoelastic flows through
contractions, particle motion in non-Newtonian fluids
(including rapid external flows of viscoelastic materials)
and stress-induced demixing have been chosen for this
purpose. Some unresolved problems in non-Newtonian
fluid mechanics have been highlighted. Directions for
future research in this area have been also outlined.

Professor Travers was a great chemist and his contribu-
tions done in collaboration with Professor Wilham
Ramsay on the discovery and specification of inert
gases are well known. Equally important were his
contributions as the first Director of the Indian
Institute of Science, since it was in that role that he laid
a strong foundation for this great Institute.

In 1687 Isaac Newton wrote a simple equation
defining the viscosity of a fluid as the coefficient of
proportionality between the shear stress and the
velocity gradient. Newton'’s equation does well while
deseribing the flow of gases and lhquids of low
molecular weights such as air, water, hydrocarbons, etc.
By the middle of the [ast century the mathematical
description of the flow of such ‘Newtonian’ fluids was
well established, This description is based on use of the
laws of conservation of mass and momentum. However,
Newton's equation cannot describe the flow of hiquids
containing polymers, especially when we deal with very
larpe molecules, whose typical molecular weights may
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range from 10° to 10%. The flow behaviour of these
materials deviates significantly from a ‘Newtonian’
behaviour and hence they are called ‘non-Newtonian’
fluids,

Polymer fluid dynamics, which has to do with such
non-Newtonian fluids, is a relatively new field; indeed
the fluid dynamics of polymeric liquids has been studied
ontly since about 1950. Authoritative monographs have
appeared over the past few years in this field* 7%, The
rapid development of the plastics industry was a major

incentive for the rapid growth of knowledge in this
field.

Strange flows of non-Newtonian fluids

How do we know that Newton’s law of viscosity is
inadequate for polymeric liquids? There are many
fascinating experiments that show that the flow of
polymernic fluids is qualitatively different from that of
Newtonian fluids. Figure 1 shows some of these
experiments.

The behaviour of Newtonian and polymeric fluids
near a rotating rod is compared in Figure 1a. The
surface of the Newtonian fluid is depressed near the
rod, whereas the polymeric liquid tries to ¢climb the rod.
This climbing 1s known as the ‘Weissenberg effect’.

In Figure 1b a rotating disk placed at the surface of
either fluid causes a primary flow in the tangential
direction, but superposed on this primary flow is a
secondary flow. Newtonian fluids are shoved outward
by the rotating disk, move downward near the beaker
wall and then move upward near the axis of the beaker.
Polymeric iquids also have a secondary flow, but in the
opposite direction,

Figure 1¢ shows how fluids behave as they are
pumped down a circular tube. We follow the motion by
watching a streak of dye that is inserted before the
motion starts; six successive snapshots of the streak are
shown. When the pump is turned off at the fourth
snapshot, the Newtonian fluid comes to rest, but the
polymenic iquid ‘recoils’ as shown in the fifth and sixth
snapshots. This illustrates the ‘memory’ of polymeric
fluids. Because they do not return all the way to their
initial configuration (as a rubber band would after
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Figure 1. Complex flow behaviour of polymeric fluids.

being stretched), we say that these fluids have ‘fading
memory.

Figure 1 d shows how a polymeric liquid swells when
it emerges from a tube or slit. The cross-sectional area
can increase by as much as a factor of five,

Figure le shows how fluids flow from a large-
diameter tube into a small-diameter tube in slow flow.
In polymeric liquids, a vortex forms up-stream. Fluid
particles trapped in this vortex do not move on nto the
small-diameter pipe.

Figure 1f shows a siphon experiment. For Newtoman
fiuids, siphons work only as long as the upstream end
of the tube is beneath the surface of the hiquid. One can
siphon polymeric fluids even if there is a gap of several
centimeters between the surface of the hiquid and the
end of the tube.

In the experiments described above, the response of
the polymeric liquid is qualitatively different from that
of the Newtonian liquid. We are thus dealing with
major variations in {low behaviour. We are faced with
striking differences that can be explained only by
rejecting Newton's law of viscosity and replacing it with
some new and more general expression that can
account for fading memory, recoil, and other bizarre
phenomena we have scen. That is the challenge that the
rescarchers involved n rheology and practitioners

involved in dcaling with these bizarre materials have
faced over the years.
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Let us first try to understand the striking differences
in flow behaviour through simple physical arguments.
Polymeric fluids respond to deformation depending
upon the characteristic time-scale of the fluid, say, a
relaxation time. For fluids such as water, the relaxation
time-scales are of the order of 10713 s, For solutions or
melts of high-molecular-weight polymers, the time
constants could range from seconds to minutes. The
ratio of the relaxation time of the fluild to a
characteristic time of the process is termed as the
Deborah number. This Deborah number plays a crucial
role in determining the response of the material. The
formalization of fluid classification is shown in Figure 2.
We can see that depending upon the region of
operation, the material response can differ dramatically.
The same fluid at low Deborah numbers can behave as
a Newtonian fluid whereas at high Deborah numbers, it
can behave like an elastic solid. In labeiling the
material as a fluid or a solid, the Deborah number and
the magnitude of strain nced to be defined carefully.
This can be illustrated with a simple example. A stlicon
putty left on the table will flow as a fluid if suflicient
time is allowed. Here under low strain-low Deborah
number conditions, the flow occurs as if it was a fluid,
On the other hand, the same silicon putty can be
bounced practically like a rubber ball on the table,
Here the relaxation time of the silicon putty remains
the same but the time-scale at which the experiment 1s
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number domain.

performed is of the same order as the relaxation time
and large Deborah numbers arise. This gives rise to a
solid-like response. As we shall show later on, such
dimensionless numbers play a key role in engineering
analysis of non-Newtonian flows>>.

Polymeric fluids are also ‘memory fluids’. A {luid ke
water has practically no memory. It assumes the shape
of the container. An elastic solid has a perfect memory. A
rubber band that 1s siretched gets back 1o its onginal
position when the strain is released. Intermediate is the
behaviour of a polymer Ruid. Fortunately the fluids
have a ‘fading memory’. Just as a human being
remembers what happened to him i the recent past
better than what happened to him in the distant past,
similarly the material remembers the recent history of
strains and stresses more than it does the history in the
distant past.

All this physical description sounds interesting but
how does one formalize this in mathematical terms?
This has been the vexing problem that has been faced
by fluid mechanicists and rheologists over the last few
decades. Over the past forty years, strategies for

handling such problems have been worked out. Let us
review some of these.

Strategy for solution of non-Newtonian flow
problems

In order to solve flow problems in polymer fluid
dynamics it is necessary to have a constitutive equation
that gives the stress tensor in terms of various
kinematic tensors. This central problem can be partially
solved by three different approaches;

The first approach is to use the experimental
measurements of rheological properties. These are
certainly helpful, since the experimental data can be
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used to construct empirical constitutive equations that
reproduce the measured quantities within reasonable
imits. This approach has #s own bmitation, since in any
one rheometric experiment usually only one or two
combinations of stress tensor components can be
measuted.

The second approach 1s to use continuum mechanics.
This can supply information about constitutive relations
in the form of various types of ordered expansions that
follow from some general postulates about the stress
tensor. However, fluid dynamicists find expressions
obtained in this way to be of limited value, because
their use is restricted to a rather small range of the
kinematical variables.

Thirdly, molecular theories can be used to obtain
rheological properties, and in some cases, complete
constitutive equations, in terms of the parameters that
characterize the mechanical model that purports to
describe the most important features of the polymer
molecule. Here again, there is a imitation. The extent
to which the kinetic theory can describe the polymer
liquid response depends on how realistic the mechanical
model is, but an increase in the reliability of the model
and its closeness to realism is accompanied by a
{ormidable increase in the mathematical and compu-
tational complexity.

A combination of the three approaches above is what
is used today. Molecular models and kinetic theory
suggest forms for constitutive equations that hoid cut
the promise of being useful over wide ranges of
kinematic variables. In obtaining the constitutive
equations one makes use of continuum mechanics
relations involving various strain and rate-of-strain
tensors. The parameters in the final constitutive
equation cannot be computed a priori. Therefore, they
are evaluated by comparing the computed rheological
properties with those obtained from experiments. We

will give below the essence of these individual
approaches rather briclly.

A continuum mechanics approach

The descniption of a Newtoman fluid such as air or
water Is simply given Dy

T=nD (1)

where t is the stress tensor, D the rate of deformation
tensor and » the viscosity.,

However, for a non-Newtonian fluid a2 very complex
description is required. An interesting approach Js that
of the ‘simple fluid’ developed by Noll’. He enunciated
four major principles including determinism of stress,
local action, non-existence of a natural state and the
fading memory. The general mathematical description
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of ‘simple fluid’® requires that the stress in some

functional over the past history of the deformation is
represented by

= H*’f Z% _ (strain) (2)

Limiting cases of equation (2) can be derived leading
to meaningful modelling of real fluid behaviour. For
instance, 1If the motion is slow (in the sense that the
changes in deformation occur slower than some natural

time-scale for the fluid) then the simple fluid reduces to
the fluid of grade n.

N
g=—plt+1= Zﬂﬂ‘”, (3)

where ¢ is the total stress, v the deviatoric stress, p the

isotropic pressure and I the unit tensor. For a fluid of
grade 2, we get

r=a A+ oy (AP +a 4@ (4)

where AV and 4 are the Rivlin—Erickson deformation
rate tensors and «,, ; and «5 are material parameters.

Such a fimd has a constant shear Viscosity as given
by:

n(y)=ay, ()

and demonstrates the effect of fluid elasticity through a

non-zero normal stress differences in shear flow given
by:

Ty = 122=203 7 (6)
52— T33= — (203 +a,)j7 (7

While such a ‘slow flow’ approximation is useful,
transient behaviour is not readily predicted. Green and
Tobolsky® developed integral expansions which were
later formalized in a single integral form by Lodge® as a
rubber-liquid. This development fed to

TﬂJA Ni—tyC™ (1, t)dr, (8)

where N{t—1t') i1s the memory function for the fading
memory and C~' is the Finger stress tensor. The
memory function could be expressed cither tn a discrete
form

H . F
Ni=1'y= Y &Exp(—%ﬂ) (9)
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Or 1n a continuous form

N(r—t')=jm H(A)exp(—(‘;f))dlnz (10)

where 4 is the characteristic time for the fluid and H (1)
represents a relaxation time spectrum. Note the
negative exponentials in equations (9) and (10), which
appropriately assign larger importance to events in the
recent past than they do to the events in the distant
past.

The rubber-like fluid with minor modifications helps
us in developing several constitutive relations. The
memory function can be modified so that it becomes a
function of the state of deformation and leads naturally
to nonlinear viscoelastic response. The rubber-like
liquid is qualitatively correct at slow deformation rates
and the extension of Lodge’s concept by changing the
memory function provides a basis for improving the
constitutive relationship and enables the prediction of
practically observable nonlinear viscoelastic response.
Muany efforts in the past 1o achieve this goal have been
done by using rate-dependent memory, strain-dependent
memory, stress-dependent memory, etc.

The first models of viscoelasticity derived their
origin from mechanical analogues and were expressed
i the farm of rafe squations. The Marwell model
formulation, for instance, naturally results out of a

supenmposition of an elastic response over a Newtonian
one as given by:

OT
+—=yD, 11
T 5t ] { }

where ot/dt is some properly-defined tensor derivative
of stress such as the Jaumann or Corotational
derivative, and D is the rate of deformation tensor.

Polymer dynamics through melecular modelling

Polymers are molecules of very large molecular weight,
and thcre is an enormous variety in their chemical
architecture. Polymers are formed by stringing together

- certain repeating groups of atoms in such a way that an

extremely long chain 1s formed. Such a chain can be
oriented in space. In addition, it has a lot of fleatbility
resulting from the large number of internal degrees of
freedom. The chain can appear in a coiled-up configu-
ration, or it can be stretched out into a long string-like
configuration.

To study the kinetic theory of polymeric liquids, ong
has to select some kind of mechanical model that
represents the actual polymer molecule. Flory!?, in his
study of the configurations of polymer molecuies in
systems at equilibrium, actually used rather detaided
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models that account for chemical bond lengths, bond
angles and rotational isomeric states. However, such a
realistic molecular modclling is not possible today in
rheological studies, because the motion of molecules in
flowing systems i1s so much more complicated than that
in equilibrium systems,

In molecular modelling, the a prion assumptions are
more physical than mathematical. On the basis of
known information on the gross structural features of
the polymeric chain (e.g. linear and flexible, star-like
and flexible, rngid rod-like, etc) and by using general
concepts of statistical mechanics, the basic steps in
establishing a molecular model are as follows!!:

(1) The polymenc molecule is represented as a
mechanical object endowed with those ‘molecular
properties which are thought to be relevant. Thus the
object will be made up of a certain number of friction
points, entropic springs, rigid segments, ete,, depending
on the specific polymer {see Figure 3). The advantage of
substituting for the real chain such as artificial object
consists in the fact that the configuration in space of the

models representing chamn-like polymer
molecules m kinetic theory: a, Kirkwood-Riseman chain; 4, Kramers
chain; ¢, Rouse-Zimm model; d elastic dumb-bell model,

Figure 3. Mechanical
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latter can be specified with a simpler, usually smaller set
of coordinates than the polymer molecule itself.

(1) Since the molecules are subject to random
thermal forces, it is of course meaningless to spcak of
the effects induced by the motion of the liquid on the
configuration of any one of them. Rather, one is
interested in the effects induced upon the distribution of
configurations. Thus, the second step in the analysis
consists of writing down the equution of change of the
distribution function. This usually involves simple
concepts of contunuity and {orce balange,

(1)) The third step establishes which average,
involving the configuration coordinates, must be made to
obtain the stress tensor {or the optical tensor, if
birefringence is investigated).

The three steps above define the essence of the
molecular model. The predictions of the model for a
given [low are found, by solving the equation of the
distribution as written in step (i) and then using this
distribution to perform the average of step (). In some
favourable cases, the solution procedure can be
simplified by avoiding the explicit determination of the
distribution function. The equation of change of the
distribution is manipulated so as to become the
equation of change for the average which provides the
stress tensor. If this can be done for an arbitrary flow,
the stress constitutive equation is obtained explicitly. In
other cases, only certain predictions c¢an be readily
derived whereas others are obtained through pains-
taking numerical procedures or, possibly with the help
of additional simplifying assumptions.

The advantage of this approach is obvious, since it
allows one to relate the predicted features of macroscopic
behaviour directly to molecular properties via the
model representation. Depending on the agreement
with the experimental results, it is always possible, at
least in principle, to introduce in the model physically
significant corrections so as to approach progressively a
satisfactory representation. Conversely, if the quest is
for a mathematically more tractable, simplified model,
refmements can be dropped, knowing beforehand which
physical effects are being left out.

More quantitative insight into kinetic theory

Some 1msight into the quantitative approach in
molecular modelling through a kinetic theory approach!
can be now considered. The stress tensor t describes the
force transmitted across an arbitrary mathematical
plane moving with the fluid (the force per unit area
from the negative side to the positive side across a
plane with unit normal vector n is just n.t). There are
five mechanisms contributing to the force (see Figure 4)
® the momentum transfer as the solvent or polymer
‘beads’ cross the surface ()
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Plane moving with  configuration ry, r,,---,r, at time ¢:
I/_uverage velocity

~1+ of the fluid OV N @
Solvent . o= (—*i‘,‘l’)
molecuies n ot v=1 \ Cr,
Polymer T Here r, 15 the position of the vth bead and 1, is its
molecules l-"'; ﬂ‘;’:::;:? velocity. This equation simply states that when a
o -7 polymer molecule leaves one configuration it must turn
up in another. This equation by itself is of little interest.
T, What we need 1s an expression for the bead velocity r,.
Intramolecutlar  This is obtained by writing down an equation of
M force motion for each of the N beads of the bead-spring
model:
Tss
-1 mf,=F M+ F 874 Fle)
Tsp
l} .4-® Intermolecular v=12-- N. (14)
forces
Tep Equation (14) implies that the product of bead mass

Figure 4. Molecular mechanisms that contribute to the siresses in a
polymeric hiquid.

the tension in a polymer molecule that straddles the
surface (zp)

the force between two solvent molecules on opposite
sides of the surface (r )

the force between a solvent molecule and a polymer
molecule (r,

the force between two polymer molecules (zpp).

ence the total expression for the stress tensor is

e

T=r T+ T+ T+ T, (12)

The expression for 7, involves the contribution of
intramolecular forces. Here one must average over all
possible configurations of the macromolecule in the
particular flow system being studied, that 1s, one has to
know the ‘configurational distribution function’ W, This
defines the probability of each of the very numerous
configurations of the polymer chain. Similarly, to
calculate the kinetic contribution {ry), knowledge of the
velocity distribution of the beads is needed. To get the
intermolecular force contributions 7, 1., and 7, onc
needs the various pair distribution functions. It is
difficult to obtain these last two distribution functions,
so one proceeds by making some assumptions.

We can write down an equation of continuity for the
distribution function W{r,,rs, -+, ry, 1), which gives the
probability that the polymer molecule finds itsell in the
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and bead acceleration is equal to the sum of the various
forces acting on a bead namely the hydrodynamic drag
force, the Brownian motion force and the spring force
assoclated with the intramolecular potential. One
usually omits the acceleration terms on the left side of
the equation so that the equation represents just a
balance of forces. After one introduces specific expression
for the various forces (including a form of Stokes’ law
for the hydrodynamic drag, which involves the bead
velocity f,), one can solve equation (14) for the bead
velocity and substitute the result into equation (13) to
obtain a second-order partial differential equation
for ‘.

Several mechanical models have been used for the
description of kinetic theory of flexible, chain-like
polymers. Some of these are shown in Figure 3. 2 The
Kirkwood-Riseman freely rotating chain is made up of
‘beads’ joined together by massless ‘rods’, but the angles
between successive rods are fixed; & the Kramers {reely
jointed chain is composed of beads joined by rods, with
universal joints at the beads; ¢ the Rouse-Zimm chain
is constructed from beads and ‘springs’, with universal
joints; and d the elastic dumb-bell 1s made up of just
two beads and spring. These models have been listed 1n
decreasing order of complexity, but each model 15
supposed to represent long-extensible molecules that
can undergo rotational and uncoiling motions. The
constant angles between the rods in the Kirkwood-
Riseman chain describes the inHerent stiflness iIn
polymer chains, which the other models do not
describe. The e¢lastic dumb-bell model  clearly s
incapable of mimicking the responses associated with
the many internal degrees of freedom of a polymer
molecule. Tts simplicity however, has made it quite
useful as a tool in vnderstanding of the relation between
molecular motions and rheological phenomena.
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The choice of molecular model will generally depend
on the contemplated use of the kinetic theory results.
To describe the small-amplitude oscillatory experiment
used for studying linear viscoelastic responses, one
nceds @ model with many internal degrees of freedom,
particularly if 1t 1s desired to describe effects at high
frequencies; the Rouse-Zimm chain model has proven
to be quite useful in this instance. To describe the
stcady-state shear flow experiment, where the overall
rotation of the molecule is the principal molecular
motion involved, it is not particularly necessary to use a
model with many beads since the small scale motions
are not activated in the Mlow. To describe an
elongational flow experiment, in which the molecules
are being stretched out considerably, a model that has a
finite extensibility 1s required, such as the Kramers
chain or an elastic dumb-bell with a nonlinear spring
that can be stretched only to a finite hmit. 1f one wishes
to be able to describe all three of these types of
experiments quantitatively, then a more comprehensive
model such as the Kirkwood-Riseman chain has to be
used, since it can describe chain orientation, smatil-scale
motions, finite extensibility, and chain stiffness.

The various models contain a number of constants,
such as the number of beads, the spring constants and
the length of rods. These are, of course, empirical
parameters, and are not unhke the constants in the
Lennard-Jones potential used widely in the statistical
mechanics of gases. In many instances one can
eliminate these parameters in favour of more funda-
mental molecular constants or parameters derived
expenimentally from bulk properties.

Rheology of dilute vs concentrated systems

Flows of dilute or of concentrated solutions and melts
of flexible polymer molecules need to be treated
separately, The term ‘dilute’ means that the molecules
have minimal overlap with each other. Concentrated
solutions have considerable molecular overlap. The
rheology of concentrated solutions is similar to that of
bulk polymer melts. We must distinguish between dilute
solutions and concentrated solutions or melts, because
there are major differences in the rheology of fluids in
these two categories.

In a dilute solution, the interactions among polymer
molecules can be ignored by defimition. Thus, the
corresponding molecular models only account for the
intrinsic properties of the macro-molecules themselves,
it conjunction with their dynamic interactions with the
solvent. The effect of the latter is simply that of a
visCous continuum in which the polymeric chains are
immersed. Conversely, in concentrated solutions and
melts, the interactions between the chains is expected to
play a major role. These concentrated systems show a
more complex behaviour.
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Polymer melts behave in two different ways,
depending on molecular weight. 1t is well known that
the viscosity 1s proportional to M, if M s smaller than
a critical value AM_ (of order 10* for most polymers). It,
however, becomes proportional to M> %, if M>M_ (ref,
10). More generally, it was found that the observed
behaviour for M <M _ closcly follows the predictions of
the Rouse model. Since this model had originally been
conceived for diute solutions, the observed agreement
for polymer melts was somewhat surprising. The
explanation was given on the basis that the dynamic
interaction between any chain and the surrounding
chains could still be modelied as if the medium was a
viscous continuum, 1.e. no special effects due to the
polymeric nature of the surrounding molecules come
into play when M <A . By implication, it was inferred
that the non-Rousean behaviour which is observed for
M>M_, was due to a peculiar effect of very long
molecules being in close contact to one another. [t was
assumed that long chains form entanglements. Though
they were not defined in any precise way, the
entanglements were clearly related to the obvious
impossibility for the chains to cross each other by
cutting through their backbones.

Unfortunately, this appealingly simple concept was
not adequately developed for a long time. Two different
ways of treating entangled systems were commonly
used. In one of them, the entanglements are modelled as
if they were additional friction points along the chain.
The model i1s thus essentially that of Rouse, the extra
friction being used to explain the viscosity increase
above that predicted by the original Rouse theory.
Apart from the arbitrariness of this ad hoc adjustment,
the modified Rouse models proved unable to predict
correctly the other features of the viscoelastic
behaviour,

A second group of models approached the problem
from an entirely different viewpoint, It was well knoewn
that rubbers are networks made up of chemically cross-
linked polymeric chains. The rubber elasticity theory
had been developed since the early forties and showed a
substantial agreement with experimental observations.
By an extension of this itdea, concentrated polymeric
liquids were modelled as ‘networked’ liquids, where the
entanglements played the role of temporary cross-links.
Impermanent junchion network theories were advanced
as early as 1946 by Green and Tobolsky® and, more
systematically, by Lodge®, and further developed up to
recent times. We have already made a reference to such
developments earlier (see, e.g., equation &). An
inevitable shortcoming in this approach 1s that the
basic elements of a network model are the network
strands, L.e. the chains which run from a junction to the
next one. In a chemicaily cross-linked network, the
mechanical behaviour 15 indeed essentially determined
by these well-defined chains, In an impermanent
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network, however, the rates of the junction destruction
and reformation processes also play a crucial role, in so
far as they determine the hquid-like character of the
material. Now, in the impermanent network idea per se
there is no quantitative suggestion about these rates.
They must be assumed a priori in an esentially
arbitrary way. In other words, the concept of an
impermanent network made up of entangled chains,
though intuitively appeahng, 1s ultimately not very
informative. In shifting the emphasis from the primary
polymer chains to the network strands, the model
becomes incapable of predicting the dependence of
properties on the molecular weight of primary chains.
By analogy with the case of cross-linked rubbers, one
might have hoped that the network idea would provide
at least a good description of the ‘elastic response’ of
entangled liquids. Even this expectation was fulfilled
only in a few limiting conditions.

A fresh approach to the modelling of long chains in
dense systems started developing in the late sixties,
rapidly gaining momentum in recent years. This
fundamental progress is due to S. F. Edwards, P. G. de
Gennes and M. Doi. The seminal contributions of these
authors have been summarized in e¢legant mono-
graphs'?*3, Let us look at these contributions
somewhat more closely.

Reptation model

The essence of this model is based on the fact that one
can trace the ‘viscoelastic’ behaviour to the knotting of
the chains of monomers that make up the polymers.
Shearing forces tend to undo certain knots, but this
takes a fimite time 7. In a time greater than t_ the
original knots fade out, and the melt flows. Over
shorter times the original knots are all present, and the
melt behaves like an elastic network.

A major problem is to transform these qualitative
ideas into a theory. An obvious way to proceed Is to
have a detailed analysis of knot structures and knot
statistics. This approach had limited success due to
several reasons. To define topologically a knot betwecn
two curves, cach curve must be closed, However, the
essential behaviour of chains at times close to r,
depends crucially on the fact that they are open, and
can modify their knots. The theory of knots, unfortu-
nately, is far from complcte. Mathematicians know
explicitly only a few topological invanants characte-
rizing knots. de Gennes''? approach was to concentrate on
individual polymer chains as they move in the complex
polymer melt by ‘reptation’ (from the Latin reptare, 10
creep), much as snakes would move through a set of
fixed obstacles, The essence of the approach can be
simply explatned.

Edwards'® clearly stated to be

that the effect
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examined in entangled systems was the reduced number
of configurations available to the chain, which are
‘boxed 1n’ by other chains. Figure 5a shows schematically
a segment of a long chain together with the obstacles
formed by other chains depicted as dots. The chain
cannot pass these dots, since 1n a real system it will
mean cutting through the backbone of other chains,
which 1s clearly not possible. Figure 5b shows two
more permissible combinations of the same chain. One
of them, shown as a broken line, is very special. It is
obtained by imagining that the chain is pulled taut.
Later on Edwards called this unique configuration the
‘primitive path’ of the chain or, alternatively, the
‘primitive chain’. Although the specific statistics of this
situation 1s unknown, we propose intuitively that
configurations beyond a certain distance from the
primitive path are unlikely. We thus imagine that a
tube-like region exists, around the curvilinear axis
formed by the primitive path, to which the chain is
eflectively confined. This tube, shown in Figure 5S¢,
represents the ‘boxing in‘ effect in entangled system as
proposed by Edwards. Although the tube diameter is
not coincident with the obstacle mesh size, a close
relationship between them exists. We also envisage that

Figure &
sustounded by obstacles. b, The primiutinve path of the chamn |brohen
Ine) and an imoprobable chain configuration (full hne) ¢ The
curvilinear tube simulating the obstacles, The avs of the tube s the
primiiive path, d Tube and pnmitive path 1o the discretined form of 4
random walk.

Representation  of entangled  systems. 8, The chain
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if the chains are very long, the mesh size is independent
of the chain Iength, the chain ends being very dilute in
the sysiem.

A polymer melt at a given temperature has a
measurable characteristic frequency 1/z, separating the
viscous domain from the elastic domain, The time 1, 13
extremely sensitive to the length of the polymer chains
in the melt. This Jength can be specified in terms of the
number N of monomers in the chain. We then find

r =1, N, (15)

where 1, is a microscopic time on the order of 107'%s
in melts, and experimental values of the exponent x are
about 3.4. Amazingly enough, based on the idea of
reptation, a straightforward argument gives o =3, which
is quite close to the exponent 3.4 obtained experi-
mentally.

Consider time intervals that are comparable to ..
For such long intervals one can ignore the details of the
test chain’s ‘reptation’ and take a macroscopic point of
view, in which the test chain moves as a whole liké a
wet rope in a pipe. Ong essential parameter is then the
chain’s ‘tube mobility’ u ., defined as ¢ff, where v is
the velocity with which the chain moves along the tube
when it is pulled by a force f. This mobility is inversely
proportional to the chain’s length, for which N is the
mMeasure.

Using Einstein equation for diffusivity, we can
calculate the chain’s Brownian motion along the tube.

D:ubc=krﬂtubc (16)

Thos, the diffusivity is also inversely proportional to

the chain length N. Along a fixed tube, then, a polymer

chain's mean square displacement s%(z) due to Brownian
motion has the standard form

s2()=2D ,_t. (17)

We are now {ully equipped to understand the nature
of the relaxation time 7,. Figure 6 illustrates the basic
process of relaxation, in which the chain generates new
tube portions at random as it advances. The original
tube is completely wiped out after a time 1, for which
s(r) is comparable to the original tube length L. Thus

t 2 LD, ~N> (18)

Here we have used the fact that L is linear in N while
D ... is inversely proportional to N. The proportionality
of the relaxation time 10 the cube of the chain length 1s
the fundamental result of the reptation model.

These ideas led Doi and Edwards'® to develop a
precise theory of viscoelastic effects in melts. For small
perturbations, that 15, for linear wviscoelasticity, their
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Figure 6. Snake-hike motion and diffusion of a *test chain’.

major result is the detailed form of the ‘memory
function’, which gives the stress at time ¢ as a function
of the strain rates at earlier times ¢. It turns vut that the
memory function M (t—¢) is exactly proportional to
the “tube memory’ that the sequence of sketches in
Figure 6 llustrates. The average fraction of the chain
length that, at time ¢, 1s still trapped in the tube that
was defined at time t’. Computations of this fraction
show that it decreases exponentially at large times

M (t) —» exp (—t/1).

More generally, the Doi-Edwards analysis appears to
give a good description of the rheology of entangled
polymers provided that the distribution of polymer
chain lengths N is narrow and the molecular weight is
high enough that the macroscopic description given in
the {oregong 18 valid,

Engineering analysis

It is useful to pause briefly, and rccapitulate some
important aspects of polymer rheology, since a frequent
reference to some of these will be made later on. Some
of the material parameters of non-Newtonian fluids will
assume importance in our subsequent discussion. These
pertain to the first and second normal stress difference
and the apparent viscosity. It is useful to recall that the
first normal stress difference, N, =1,,—~1,,, and the
second normal stress difference, N,=1,; —13,, are zero
for a Newtoman f{luid. Further, apparent wiscosity
1,,/7{=1) is a constant, where y is the shear rate. Both
dilute solutions and melts of polymers, however, can
possess first normal stress differences of significant
magnitude. While dilute solutions show little shear
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thinping, the shear viscosity of concentrated solutions
or melts can decrease by several orders of magnitude as
the shear rate increases. Also, in concentrated solutions
and melts, the first normal stress coefficient, W, =N, /4?3,
which is a constant ¥, , at low shear rates, can
decrease by several orders of magnitude as y increases.
This decrease in W, is another manifestation of shear
thinning, In addition, melts and concentrated solutions
in shearing flows often have a significant negative
second normal stress coefficient, W,=N,/y%, while in
dilute solutions this quantity can be nearly zero.

All constitutive equations for viscoelastic fluids
require the specification of at Ipgast two material
parameters, namely, the zero shear viscosity n, and at
least one relaxation time A. For dilute and concentrated
solutions or melts, these parameters can be estimated
theoretically if one knows the molecular weight of the
polymer and the solvent viscosity. In a dilute solution,
the longest relaxation time depends on the chemical
nature of the polymer, on the solvent viscosity, and on

the molecular weight of the polymer molecule 1n the
following way*.

A _ZKM”“
Mo RT ~°

(19)

where, R i1s the gas constant and T the absolute
temperature. The exponent « for a flexible polymer is
usually between 0.5 and 0.8, depending on the degree to
which the solvent tends to swell the polymer. A theta
solvent by definition has no swelling tendency, and
x=0.5. The parameter K reflects the frictional properties
of the polymer and the solvent swelling characteristics.

For concentrated solutions or melts, the scaling of
the zero shear viscosity and the relaxation time 1s non-

trivial, but can crudely be approximated from the data
of Osaki et al.’® as

L KPM3?
no  108f3 7

(20}

where f=c/c*, ¢* being the concentration at which the
polymer molecules begin to overlap appreciably. The
solution is only weakly entangled unless [ is 10 or
greatcer.

The parameter A will be used in defining dimensionless
numbers. One important dimensionless number is the
Weissenberg number {(Wi=AV/d). Here, V is a
characteristic velocity and d is the small dimenston of
the flow gecometry so that V/d 1s a characteristic
velocity gradient. Flow time can be cither the residence
time of a flud particle in the flow, or the characternistic
time of a {low transient, such as the time over which a
fluid particle in the flow, or the characteristic time of a
flow transient, such as the time over which a fluid
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particle experiences a changing velocity gradient as it
passes through a diameter contraction in pipe.
Sometimes, flow time is defined for steady rotational
flows as the reciprocal of the angular velocity w of the
rotating surface; in that case, De=Aw. These dimen-
sionless numbers play a crucial role in the design and

analysis of situations involving non-Newtonian flows
{see e.g., equations (5), (6)).

Some special problems

In the foregoing, we have provided a background on
the bastc rheological behaviour of non-Newtonian
fluids and also shown an approach to model these
fluids. As engineers, we will be concerned with the use
of such knowledge in solving problems of pragmatic
importance. What I would like to focus on are three
different problems, which demonstrate the extent of
understanding that we have today and how exactly it
has been used in problem solving.

The first problem concerns instabilities 1n polymer
processing. Even simple extrusion of a molten polymer
to get a solid polymeric rod may pose formidable
difficulties depending upon the rheological complexities.
Many interesting aspects of this important problem will
be highlighted by considering the special problems
linked to flows with restrictions and then the problem
of extrudate distortions and fractures arising out of
instabilities.

The second problem area will be concerned with the
motion of non-Newtontan fluids past submerged object,
such as spheres, cylinders etc. The objective here 15 to
show the dramatic differences that exist between
motion in Newtonian fluids and that in non-Newtonman
fluids.

The third problem arca will be concerned with the
behaviour of polymer solufions in non-homogeneous
deformation fields. The implications of demixing of
polymer solutions undg¢r stress are rather profound. The
phenomena range from formation of slip layers at solid
surfaces to stress-induced phase changes such as
polymer precipitation on deforming a polymer solution
or a melt.

I have made personal contribution in the second and
the third area and therefore the discussion will be
slightly biased towards my own work. The first area of
instabilitics, howecver, is fascinating in terms of the
bizarre behaviour one can obtain and has been
therefore specially highlighted.

Instabilities in viscoclastic flows through contractions

Very interesting instabilitics can be found in a variety of
situations involving flows of polymer {luids. These have
been recently reviewed by Larson'® in an excellent
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manner. We will be concerned only with some specific
aspects of instabilities here.

The instabilities found In viscoelastic fluids flowing
through contractions are of potential importance in
molding, extrusion, and in {ibre spinning, since each of
these processing operations involves contraction {low at
some stage. For instance in fibre spmning, polymeric
fluid is forced through a ‘spinneret’, which is a plate
with an array of orifices.

The gcometry of the cylindrical sudden contraction is
depicted in Figure 7. The {luid enters the contraction
region from an upstream tube of radius R, and is
accelerated into a smaller tube of radius R,. For any
fluid, Newtonian or non-Newtoman, there exists a
region of extensional flow near the centerline and the
contraction plane, and there is a secondary flow
consisting of an eddy in the salient corner.

For a Newtonian fluid inertia can change the flow
and the shape of the salient corner vortex'” '8, Many
interesting transitions occur for viscoelastic {fluids as the
llow-rate is increased and flow is thereby made more
elastic. The earliest visualization studies 1n the planar
contraction are those of Giesekus'®, while ¢arly studies
in axisymmetric contraction were made by Cable and
Boger?® 22 In these and later studies®*2*, a complicated
series of transitions has been found, the details of which
depend on the specific fluild and on the geometric
parameters of the contraction, especially the contraction
ratio R,/R,. Always, however, at De=o0 (1.0}, there is
an eonlargement of either the corner vortex, or of a
second vortex that often appears near the lip of the

Fully Developed
Upstream Profile

l
I

Salisnt Corner

Secondary R,
Flow
Fully Developad
Downstream Profile
Figure 7. Geometry of axisymmetric sudden contraction flow.
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contraction. Here, the Deborah number De is defined as
De=V,4/R,. At higher Deborah numbers, these
workers have observed that the greatly enlarged vortex
cither pulsates regularly, or becomes asymmetric and
spirals around the upstream tube. Finally, at De=15,
the oscillations become aperiodic?®,

In Laser—Doppler velocimeter studies of McKinley et
al.2* and of Lawlet et al? the first transition with
increasing De produced a time-dependent flow. In fact
it occurred before the onset of the visible pulsing of the
enlarged vortex. These Laser-Doppler studies show
that at least in some cases, three-dimensional time-
periodic oscillations in velocity occur in a confined
region near the lip at a critical Deborah (De ) below the
regime of vortex enlargement. As De is incréased above
De_, higher harmonics and even a subharmonic can
appear in the frequency spectrum. At still higher De, in
the work of McKinley ez al,, a2 Iip vortex appeared. The
velocity field associated with this lip vortex was
quasiperiodic for small R,/R,(< 5} and was steady for
larger R;/R,. At still higher De, 1n the vortex growth
regime, the frequency spectrum showed the flow to be
aperiodic for R,/R; < 5. Figure 8 shows the flow
transitions determined in the Laser—-Doppler and
visualization studies of McKinley ez al. The sequence of
transitions that occurs in axisymmetric contraction flow
ts sensitive to both the Contraction ratio and the fiuid
rheology.

Shaping of polymer objects depends crucially on the
instabilities during flow. When a polymeric fluid is

™ Pulsing
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Figure 8. Flow transition diagram for sudden contraction flow of a
solution of 3100 ppm polyisobutylene (MW=12x10% in low-

molecular-weight polybutene with httle added tetradecane {from
McKinley et al.24).
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forced through a capillary or slit die, distortions of the
extrudate are observed when the recoverable shear Sp
reaches a critical value in the range 1-10 (refs. 26, 27).
The recoverable shear Sg=1_/G is defined as the wall
shear stress 7, divided by the characteristic elastic
modulus G. The wall shear stress r,, 1s proportional to
the average pressure gradient in the die, Ap/L, where Ap
is the pressure drop along the die and L 1s its length.
The modulus can be obtained from G = ny/A, where g
is the zero-shear viscosity and A i1s a characteristic
relaxation time. Hence Sg;a7 is approximately equal
to the Weissenberg number. The distortions that occur
can range from loss of gloss®®, small scratches, or slight
roughness®? to massive aperiodic and unsymmetric
variations in cross-sectional area and shape®®. While
the origins of extrudate distortions are stili in dispute,
there is agreement that less severe distortions, often
called sharkskin, ought to be distinguished from more

severe distortions that are often called gross fracture or

wauy fracture?’.

As the name imples, sharkskin is a surface roughness
that usally modulates the extrudate diameter by no
more than one per cent or so (see, however, ref.31).
Figure 9 shows different instabilitics observed by Piau
et al. in a schematic way. Sharkskin consists of
semiregular cracks of grooves that run mainly per-
pendicular to the flow axis. Gross fracture typically
involves diameter variations of 10% or more, which at
high flow rates are extremely irregular, even chaotic. In
addition, some materials show, in cylindrical dies, a
fracture regime with regular large-amplitude helical
distortions. Piau er al?® have provided an excellent
study of these features of unstable flow of viscoelastic
liquids.

Sharkskin and gross fracture are distinguished not
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Figure 9. Flow through a cylindrical orifice. &, Sharkskin distortions
of a branched polydimethyhiloxane (MW =43 x10% at Wi=—-Q3) A
Gross fracture of the same melt as (a) at Wi=0735 ¢ Helical
distortion of a linear pulydimethylsoxane (MW=13x10% at
Wi=1.15. (Schematic diagrams based on the work of Piau et ul?®)
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only by the appearance of the extrudate, but also by the
critical conditions for onset and by the character of the
accompanying flow instde the die. Gross fracture occurs
when the wall shear stress reaches a critical condition
that seems to depend only on the polymeric fluid and
little or not at all on the die diameter, 1ts length, or the
material from which it is made2®3*32, Sharkskin, on
the other hand, does not occur for all polymeric
fluids®3, and for those for which it does occur, the
onset condition has been found to depend on the

shape of the outlet region of the die?®, the length of the
die 3% and in some cases on the material of construction

or coating on the exit region of the die?® 3%, Sharkskin
occurs at a flow rate lower than that required for gross
fracture 32. At the onset of gross fracture for polymers
without long-chain branching, there is nearly always a
sharp change in slope of the curve of flow-rate versus
pressure drop?’+3*?2, Often the curve becomes vertical
or nearly vertical in the gross fracture regime, while at
the onset of sharkskin, the change of slope is much
smaller.

In silicon polymers, Piau et al.?® found a regime of
helical fracture between the sharkskin and gross-
fracture regimes, and they also found a regime of
surface scratches parallel to the flow axis at pressure
gradients lower than those required for sharkskin. In
flows driven at constant upstream mean velocity,
Ramamurthy?®, Kalika and Denn*? found between
sharkskin and gross fracture a region of ‘stick-shp’ or
‘cork flow’ characterized by alternating distorted and
smooth extrudate, with a period of alternation roughly
equal to the residence time of the meit in the die. The
pressure drop in the die also oscillated with the same
period, while the flow-rate that was nominally kept
constant by the steady displacement of a plunger that
forced the melt through the die oscillated at the die exit
because of volume expansion and contraction of the
melt caused by the severe pressuré oscillations.

With our understanding of the rheological behaviour
of these materials, can these phenomena be explained?
Explanations for extrudate distortions usually invoke
either failure of adhesion of the polymer to the die, or
mechanical failure of the polymer itsel. These expla-
nations are referred to as wall slip and constitutive
instabilities respectively®?. Wall slip is often modelled
by replacing the conventional no-slip boundary condition
by one that allows a fluid velocity at the wall that
depends on shear siress or strain history of the fluid at
the wall*3~37, A constitutive instability, on the other
hand, will occur if the constitutive relationship between
shear stress and rate of shear is non-monotonic®® as
depicted in Figure 10. Although these two mechanisms
of extrudate distortion are dillerent in principle, they
are in practice difficult to distinguish, because both
predict the same macroscopically observable phenomena
of sudden increase in fow-rate at a entical pressure
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Figuwre 10. Theoretical curves of {low veloaty (V) vs pressure (P)
computed by Mcleish and Ball®® using an extended Doil-Edwards

equation, {R=ratio of repiation to Rouse relaxation time).
Experimental data are by Vinogradov®’.

drop. Furthermore, they both seem lhkely to lead to
flow instabilities and extrudate distortion.

By using flow visualization or by measurements of
rates of heat transfer at the die-fluid surface, it has been
possible to infer that in the gross fracture regime the
flow in the die is nearly plug flow, or intermittently plug
flow30-21-3%  This evidence lends support to the slip
hypothesis, but theories involving constitutive instabilities
usually predict that the material will develop a thin layer
near the wall, at which shear rates are high, whilc most
of the material moves in a plug-like fashion®°. Also,
since extrudate distortion 15 only seen in viscoelastic
fluids, if adhesive failure is occurring, its occurrence
evidently requires a high level of molecular orientation
in the fluid. This point is reinforced by the observation
that entangled polymer solutions, like mclts, show gross
fracture when the recoverable shear Sg (which 1s a
measure of molecular orientation) reaches 2-5 (ref. 41).
This holds for entangled solutions even when the
polymer concentration 15 low enough that the modulus
G and, consequently, also the critical wall shear stress
are two orders of magnitude lower than the critical wall
shear stress required for gross fracture of melts. Thus, in
entangled solutions or melts, high levels of orientation
are not only required, but also are sufficient for gross
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fracture to occur. Any wall slip mechanism for gross
fracture must, therefore, involve the constitutive pro-
pertics of the fluid.

To date, no theory has been developed that is able to
predict such distinguishing features of extrudate distor-
tions as the spectrum of wavelengths or frequencies of the
distortion, or their amplitudes. However, the Doi-
Edwards molecular theory for entangled polymers does
imply that a constitutive instability, or catastrophic failure
of the fluid’s viscous resistance 10 flow through the die,
will occur when S is roughly 2 or s0*®~ 43, A similar
faillure should occur in other shear flows such as_cone-
and-plate flow. Indeed, fracture-like phenomena have
been reported in these geometries as well. A constitutive
instability at Sp =2 is expected from the Doi-Edwards
theory because 1t predicts a NON-MONOIONIC siress-
shear rate curve such as that shown in Figure 10 and
not the stress minimum at higher shear rates. But the
stress minimum can be included in the theory by
accounting for a transition to ‘Rouse-like’ or unentan-
gled flow behaviour when the shear rate reaches a value
roughly equal to 1/4;,_ ..., where 43, 1S the longest
Rouse relaxation time. From an analysis of such an
extended Doi-Edwards model, McLeish and Ball*® have
beenr able to predict features of the spurt phenomenon
in the nearly monodisperse polybutadiene and
polyisoprene melts***%, In> particular, they have
predicted the critical condition for spurt and the
dependence on molecular weight of the magnitude of
the jump in flow-rate that occurs at the critical
condition,

The 1idea that gross fracture is caused by a
constitutive 1nstability is therefore supported by the
observation that it occurs in wvirtually all highly
entangled polymeric liquids at a value of $; close to
that predicted for the onset of severe shear thinning by
Doi—-Edwards theory. Additional support for the i1dea
can be found in the observation that critical value of
Sz 15 increased substantially when the fluid s
unentangled and thus much less shear thinning.
Entanglemnents disappear either when the polymer
molecular weight 1s low, or the solution 1s dilute. In
both cases?***, spurt or grossly unstable flows are
delayed or eliminated. However, molecular theory
would also suggest that non-monotonic relationships
between stress and shear rate could be avoided by using
polydisperse melts, with distribution of relaxation times.
But gross fracture has frequently been observed in
highly polydisperse melts. This observation seems to be
at odds with the idea of constitutive instabilities as a
cause for melt fracture.

Some general comments on instabilities are in order.
The influence of viscoelesticity on hydrodynamic
stability 1s quite varied, In dilute unentangled or
moderately entangled polymer solutions, the first
normal stress difference N,; is a driving force for
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instability in shearing flows with curvilincar streamlines.
At a critical value of the Weissenberg number,
(proportional to the ratio of N, to the shear stress 1,,)
such instabilities have been shown to occur in cone-and-
plate, plate-and-plate, and Taylor-Couette flows.
Instabilities 1n these latter two flows should produce
viscoelastic analogues of Taylor—Dean and Gortler
vortices, respectively. Viscoelastic instabilities in these
polymer solutions also occur in flows with strong
extensional and shearing components; namely contrac-
tion flow, flow around a sphere, and flow around a
cylinder. In these, the secondary flow at onset is
confined to a region near the stagnation point.

In concentrated, entangled solutions and melts, these
instabilities seem to be rare or nonexistent. Theoretical
work shows that curvilinear sheaning instabilities are
suppressed by shear thinning of ¥, and especially by
the negative second normal stress difference that
characterizes the rheology of well-entangled systems.
However entangled fluids display a different class of
instabilities, namely fracture. The severe form, called
gross or wavy fracture, typically occurs in or near the
shear-thinning regime at a value of the Weissenberg
number in the range 1-10. In Poiseuille, cone-and-plate,
or plate-and-plate flows, severe fracture manifests itself
as distortions in fluid-air surfaces, in sharp or
discontinuous changes in the stress-flow rate curve, and
In macroscopic siip or plug-hike fiow. Although fracture
was first observed decades ago, the mechanism by
which it occurs is not fully understood. The failure of
adhesion between the polymeric fluid and the wall has
been extensively cited as a cause. The overall evidence
indicates that the rheology of the bulk fluid plays a
major role in gross {racture, while slip at the wall plays
a role 1n lIess severe forms of fracture, such as sharkskin.

Elastically-driven instability 1s still far from understood
properly. This is not only due to the himitation of the
constitutive equations, but also because sccondary
flows resulting from the instabilities are typically time-
periodic and/or three-dimensional, and often contain a
wide spectrum of wavelengths and frequencies. Ideal
cases, in which the first instability experienced by the
base flow is stationary and either two-dimenstonal or
axisymmetric, exist in Newtonian Taylor-Couctte or
Rayleigh-Benard flows, but are rare or nonexistent in
elastically driven instabilitics,

Thus one can emphasize that for Newtonian fluids
one can compute not only complex multidimensional
steady flow fields, but also the disturbances to which
these flow ficlds are lincarly unstable. One day onc
should be able 10 do similar anulysis for multidimen-
sional viscoclastic Mows. We have not been successful in
this endeavour, because computing even the stationary
base flows at Weissenberg numbers of order umty or
higher has until very recently been difficult, and the
accuracy of the few solutions obtained has been
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questionable*®, But with recent advances*’ it seems
likely that numerical stability analyses of multidimen-
sional viscoelastic flows will soon be common.
Hopefully, this will enhance our understanding in an

important area, which is so vital for controlling the
polymer-processing operations.

Particle motion

The process of mass transfer in dispersion of bubbles or
drops 1s wholly governed by the mechanics of bubble or
drop feormation, nise, deformation, coalescence, break-
up, etc. Each of these processes needs to be understood
fundamentally. Some of our early work was focused on
looking at the aspects of particle motion in non-
Newtonian fluids.

The drag on a solid sphere moving under creeping
flow conditions in non-Newtonian fluids is given by

_ 24x

Co=" @

Here x 1s a correction factor, which accounts for
the non-Newtonian character of the fluid. x=1 for a
Newtonian fluid. In the late sixties and early seventies,
there was a flurry of activity to calculate this correction
factor by solving the relevant equations of motion.
There was a dispute as to whether x<1 or x>1 for
shear thinning fluids, whose power law index (n) was
less than unity. In 1976 we published a paper*®, which
provided a simple but approximate analytical solution
to the problem of a sphere moving in mildly
pseudoplastic fluid. Interestingly enough, the problem of
calculation of drag on a sphere moving in a non-
Newtonian fluid continues to draw attention ¢ven
today®”®.

The motion of spheres under laminar conditions bul
at larger Reynolds numbers poses intercsting problems.
The well-known separation phcnomenon, which leads
to the formation of a wake behind the sphere, has been
well analysed in the literature for Newtoman fluids but
has becen very poorly understood for non-Newtonian
fluids. We¢ showed®® that the wake behind a sphere is
complctely eliminated in clastic Liguids. We not only
demonstrated delayed separation in ¢lastic ligquds but
also showed evidence for the formation of an unusual
doubic wake (sce Figure 11} In fact this is the only
paper in the literature to date which quantitatively
analyses the influence of clasticity on the formation of
wahes for solid spheres moving in clastic hguids.

We used inspectional analysis in this paper to predict
the sepitration point, We correctly predicted that for
shear  thinning  materials, there witl be o delayed
separation. However, we weie wrong in our prediction
of the influence of clasticity, Qur analysis failed to
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Figure 11. Twme-dependant terminal velocities for the fall of a single

sphere in polyacrylamide solutions reported by Ambeskar and
Mashelkar>2.

predict that viscoelasticity would move the point of
separation to the rear stagnation point. The problem
remains unsolved even today!

As though this complexity is not enough, there
appear to be further complications in the movement of
solid spheres in elastic liquids. Ambeskar®' showed that
even under steady state conditions the terminal velocity
of solid spheres moving through viscoelastic fluids can
show an intriguing behaviour. The phenomena can be
simply explained. Supposing we drop a sphere in a
viscoelastic fluid and measure its terminal velocily, We
then wait for few hours and drop another sphere. We
will find that the velocity of the sphere is exactly the
same. On the other hand if the second sphere 1s
dropped a few seconds after the first sphere has passed
through, then one actually finds that the terminal
velocity of the second sphere is larger. If we continue
such sphere-dropping experiments for leng enough time
then there will be a point beyond which the velocity
will not change. Figure 11 shows typical data presented
by us recently®?,
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One of the explanations that was advanced for this
phenomenon was that macromolecules under stress
move away [rom highly sheared regions. (We will be
making a detailed reference to this later on.) It is easy
to see that if this did indeed happen then the depletion
of concentration of macromolecules 1n the line of the
moving sphere will create a low viscosity layer and
thercfore the drag force will reduce. We subjected this
hypothesis to test. Careful withdrawal of a solution
from the centre and measurement of centreline
concentration showed that there was no such depletion
at all. What is particularly disturbing is that the relaxa-
tion time for such fluids is small compared to the actual
restoration time, which 1s the time that the fluid takes
before the sphere velocity gets restored to the original
velocity. For instance, the range of fluid relaxation
times is of the order 10~'s to 20s, whereas the
characteristic restoration time 1s of the order of 9 to
10 min.

A related problem comes up when some elementary
problems in suspension rheology are constdered. The
problem of interactions between two spheres falling
along their lines of centre in a viscoelastic fluid was
studied by Birds™ school”’. They found that for ‘small’
inttial separations of the spheres, the two spheres
eventually converged. However, for ‘large’ initial
separations the two spheres eventually diverged! This
led Bird and coworkers to the definttion of a critical
initial separation distance. From this quantity the
characteristic time was derived for the two spheres
system, Bird's school presented this as an interesting
finding but provided no possible explanation of the
phenomenon. The possible indings on time-dependent
terminal velocity presented by us and Bird’s group’s
findings are related. The exact quantitative analysis is
somewhat unclear though.

Consider now the motion of bubbles and drops.
Smail bubbles behave as solid spheres. We analysed the
bubble motion under creeping flow conditions in power
law fluids and also Bingham fluids, which show a yield
stress®*°>, The predictions looked reasonable when
compared with the experimental data.

Slightly larger bubbles show an inverted tear drop
shape. Although studies on deformation of fluid
particles i Newtonian liquids are available, the
distortion of a spherical bubble to a2 tear drop shape
has still not been shown by exact computations. Our
later work>® on deformation and shape of bubbles was
semi-empirical.

What s particularly fascinating is the phenomenon of
discontinuity in velocity. This spectacular result, which
was first observed by Astanta and Apuzzo®? and
subsequently confirmed by many workers, which
included our group too°%, still remains unexplained.
Figure 12 shows the dramatic evidence of a disconti-
nuity in the velocity of rise-bubble volume relationship
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Figure 12. The discontinutties in the velocity-volume plot for gas
bubbles in  viscoelastic liquids observed by "Acharya et al®®
{Q=0.5% polvacrylamide in glycerol, ®=0.5% polyacrylamide,
A=0.5% polyethylene oxide.)

for elastic liquids. Astarita and Apuzzo®’ suggested that
the predicted transition could be explained on the basis
of a change of Stokes regime (rigid interface) to a
Hadamard-Rybczyskt regime (free interface). We
showed>® with a simple criterion for a change of rigid
to free interface proposed by Bond and Newton®® that
the transition occurs at a critical bubble radius=
(o/pg)t’*. Here o is the surface tension, p the density
and g the acceleration due to gravity. However, no
rational explanation for this phenomenon exists even
today. The concern that we have is whether the time-
dependent effects that we have reported again have a
significance to the problem of discontinwties that we
are observing. The large restoration times reported by
Ambeskar and Mashelkar’? would imply that unless
experiments are done in {luids on time-scales much
larger than the restoration times, we may get spurious
results.

For large drops or bubbles (mercifully!) the inertia
terms dominate both the viscous and elastic terms in
the equation of motion, The velocity fields are therefore
essentially the same as in Newtonian and non-
Newtonian fluids. We have shown®® that the wave
theory developed originally for inviscous fluids can be
successfully used for predicting the drag for the motion
of Newtonian hquid drops in non-Newtonian liquids
and also for the motion of non-Newtonian hquid drops
in Newtonian liquids. Our photographic studics®®
showed that wakes behind liquid drops were much
larger in elastic hiquids, We thus have an interesting set
of findings. For a rigid interface (solid sphere} the wake
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gets eliminated. For a mobile interface (liquid drop) the
pattern is exactly in the opposite direction. We still do
not have a rational model to explain this,

When a gas bubble moves upwards in a liquid there
iIs a wake behind the bubbles. When some liquid is
pushed ahead in front of the bubble more liquid is
pulled along behind the bubble. Hassagar®® got an
unexpected result when he studied the wakes behind
bubbles in elastic liquids. He showed that the velocity
behind the bubbles is in the downward direction, 1.e.
away from the rising bubble. This is amounting to the
formation of a ‘negative wake’. This interesting
observation has a consequence in coalescence. It implies
reduction in rates of coalescence when two bubbles
move together. We do not still know as to why the
movement of a bubble produces a negative wake.

We have shared the simpiest problem of motion of a
single gas bubble or a liquid drop or a rigid sphere and
shown that we have still not resolved these simple
problems in spite of all the advances we have made 1n
non-Newtonian fluid mechanics! We will elaborate this
point further by considering another apparently simple

flow, namely that of a dilute polymer solution past a tiny
cylinder.

Rapid external flows of viscoelastic materials past
submerged cylinders

We specifically take up the simple problem of external
flow of a very dilute polymer solution in which a very
high-molecular-weight polymer (such as polyethylene
oxide) 1s dissolved at a concentration of few parts per
million level. We look at the flow as the fluid flows past
tiny cylinders. The objective is to find out the drag
coefficient and the heat and mass transfer coefficient in
such situations at low to moderate Reynolds numbers.
At first sight, this looks to be a very simple problem.
After all, one feels, addition of a few parts per million
will bring no magic changes. But there are surprises
waiting even in this case.

The interesting anomalics in this problem were first
detected by James and Acosta®', when they tried to
study turbulence in viscoelastic fluids. Their aim was to
use hot wire anemometry for turbulence measurements
in dilute viscoelastic hquids. By measurement of the rate
of loss of heat from a wire, it is easy to compute the
local velocity distribution, since as the velocity
Increases, the rate of heat loss increases directly. This
relationship enables one to obtain the local velocities
through a suitable calibration. However, they found
some truly surprising results, as can be scen from
Figure 13. In the case of a Newtonian fluid, the rate of
heat transfer changes continuously with  veloaty.
However, in the case of a dilute polymer solution, after
a cntical velocity is reached, the rate of heal transfer
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Figare 3. Companson of heat transfer rates of Newtonian and
viscoelastic flurds, The data have been reproduced from the paper by
Metzner and Astanita®?,

becomes independent of the velocity! Interestingly
enough, if the probe is not a blunt object such as a
cyhindrical wire, such phenomena do not take place.
The parallel data on drag coefficients (see Figure 14)
obtained by James and Gupta®? also show the same
behavicur. These findings in the late siaties excited
quite a few of us and we all made attempts to interpret
these phenomena. The last effort I know was a paper
presented by Dan Joseph of Minnesota University at
the 62nd Annual Meeting of the American Society of
Rheology during October 1990 in New Mexico! It is
interesting to go through the history of this development
and summarize the variety of models that have been
proposed to explain this phenomenon.

The first authors to make an attempt to explain this
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Figure 14. Comparson of drag coeflicients in Newtonian and
viscoelastic fluds Cylinder diameter=0 006 1nch. The data reported
by James and Gupta®?,
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phenomenon were Metzner and Astarita®?, They
analysed the boundary layer flow of an elastic Liquid
past a cylinder. They argued that near the front
stagnation point of the cylinder, the rates of deformation
change very dramatically. Such deformational processes
may be characterized by large values of Deborah
number. They argued that at high external fluid
velocities, a Deborah number of suffictent magnitude to
imply solid-like material response will be expected. If
this happened, then there will be a tendency towards
the development of a block of solid-like stagnant
material coating the region surrounding the stagnant
point. This would imply a region surrounding the
physical stagnation point, in which fluid velocities,
though not zero, will be 1n fact substantially below the
free stream velocity,

To model the flow near the front stagnation point,
which had extensional flow characteristics, they
assumed that the stresses developed in the stretching of
a flat sheet could be considered to a first approximation.
These are given by the expression:

4nl’s

A= .
t T 1-@iry

(22)

Here A 1 1s the stress difference, n the viscosity of the
fluid, T, the rate of stretching and 2 the relaxation time.
They argued that the maximum possible stretching rate
will be hmited by the requirement that the stresses
remain finite. This means

l
rmax = E ' (23)

The stretching rate for a fluid flowing past a cylinder
would be approximately given by

4

I"S=Tcosﬁ. (24)
This implies
U l
bl = : 25
( d )max 84 COS ¥ ( )

Here U is the free stream velocity, d the diameter of
the cylinder, 4 the relaxation time and € the angle
measured from the front stagnation point. The
significance of this equation is that 1t fixes the
maximum value of the free stream velocity, at which,
for a given cylinder diameter, potential flow may be
maintained. If this maximum velocity i1s exceeded, then
the external flow will depart from that of a potential
velocity field in such a direction as to maintain the flmid
stretch rate below the maximum level given by
equation (23). This effect is essentially manifested as a
thickening of the boundary layer through an increase 1n
the effective radius of curvature of the external velocity
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field in which a potential flow distribution may be
assumed.

The major problem in this argument of ‘limiting
stretch rate’ was that the level of stresses implied by
Metzner and Astanta could be reached only under
certain conditions. For instance, Denn and Marrucci®*
performed an analysis of the stretching of a flat
viscoelastic sheet under unsteady conditions and showed
that Jarge stresses will be reached only when the
following conditions were satisfied

A,>1 and AT'» 1, (26)

where ¢t is the time that a material element is subjected
to a stretch rate of I. A careful reanalysis of the
situation will show that such conditions are not easily
satisfied under the conditions of flow and_therefore
perhaps the arguments based on ‘limiting stretch rate’
were not tenabie.

Ultmann and Denn®® locked at the problem in a
different way. They carried out an Oseen type of
approximation for the flow of a fluid around a cylinder.
They showed that the velocity distribution was then
obtained in terms of a stream function ¥, which obeys
the following differential equation.

1-y? 51‘P+ﬁ'1‘1’ N e
v/iA ] 6x%: Oyt 0Z°
oY
Re i 0. (27)

Here v is the kinematic viscosity, Re the Reynolds
number, x, y, and z dimensionless space co-ordinates,
and U the unperturbed velocity. One may notice that if
U < (v/A)** the equation is hyperbolic and admits
solutions with discontinuities along the wave f{ronts.
Discontinuities of macroscopically observable quantities
in viscoelastic liquids have been reported experimen-
tally by Joseph and coworkers®%°®’. One also notices
that the quantity (v/4)'/* is a constant for any given
fluid. Therefore anomalies are to be expected, when the
flow velocity reaches a critical value, which 1s
independent of the length scale of the flow field.

These arguments are indeed appealing. However, 1t is
rather worrisome that inclusion Into the constitutive

equation of even a very small retardation time Ag
leading to

o1 oD
T+.;LE}*—HD+ARE (28)

smooths out the discontinuities as shown by Tanner®®,
It is thus scen that the predictions made by Ultmann
and Denn very much depend upon the modcel that is
used and therefore such an analysis has obvious
hmitations, which good modcls should not have.

We ourselves entered this area later. We did an
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alternative boundary layer analysis®? for elastic fluids,
In classical boundary layer analysis one equates the
inertial stresses and the viscous stresses within the
boundary layer. However, we argued that for rapid
external flows of viscoelastic fluids we must equate the
elastic stresses and the inertial stresses. We provided
physical arguments to show as to why this should be
SO,

As we know, in the case of a Newtonian fluid flowing
past an object of characteristic length L, the boundary
layer thickness & depends upon the inverse square root
of the velocity as shown below:

§ ~{LyfUY2. (29)

However, our new ordering method yielded an

unusual result for the boundary layer thickness given
by

By~ (VAYH2, (30)

We called 9, as an clastic boundary layer. Clearly
this boundary layer thickness is independent of the free
stream velocity and depends only on fluid properties.

We analysed the heat as well as the momentum
transport problem in this framework. There was a fair
agreement with our predictions and the data. There
were no adjustable parameters at all in these
calculations. The relaxation time 4 was also calculated
on a molecular basis.

We were quite happy at this development since
photographic measurements’’ had demonstrated the
existence of stagnation regions predicted by us.
However, a point of concern was that the phenomenon
was observed by many workers not only at intermediate
Reynolds numbers but also at low Reynolds numbers,
for which our boundary layer analysis was clearly not
valid,

This problem continues to draw the attention of the
rescarchers. Some additional interesting observations
were made by Ambari et al.’!. They performed an
analysis of mass transier from a small cylindrical wire in
a dilute polymer solution by using an electrochemcal
technique. They found the same results that were
obtained with heat transfer and drag coeflicient by
others. They ascribed this phenomenon to the rapid
stretching of polymer coils, which occurs when the
extensional gradient in the upstream vicinity of the wire
becomes equal to the reciprocal of polymer relaxation
time. In fact they directly linked it to the coil-stretch
transition that is supposed to occur when macromolecuices
are rapidly deformed.

What is perhaps more interesting 1s that they found
that fluctuations arise at the point of transition. This
results, they argued, in a hydsodynamic instabibty
induced at the point of viscosity stratification around
the cylinder. They showed that instabilities actually
occur near the stagnation point of the stream,
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What is important about the analysis by Ambari et
al, is that they not only offered a rheological
explanation, which involves viscoglasticity of the
solution explicitly, but also provided in parallel a
molccular interpretation.

Recently, Hu and Joseph numerically simulated the
flow of an upper convected Maxwell fluid past a
circular cylinder. They showed that for a fixed Reynolds
number, as the fluid elasticity increases, there 15 an
increasingly larger downstream shift of the streamlines.
At the same time there is a rclatively small upstream
shift. The distortion of the streamlines creates a wide
region near the cylinder, where the velocity is low. This
stagnant region grows with increasing elasticity.
Interestingly, for a highly elastic fluid, the isovorticity
lines jam together at the front shoulder of the cylinder,
creating a vorticity shock. There exists a second high
vorticity  region away from the c¢ylinder surface
suggesting generation of vorticity away from the
cylinder surface or behind the vorticity stock. A special
feature of this analysis is the existence of a critical
velocity [=(v/4)*], at which the variation of the drag
and heat transfer changes from a characteristic
Newtonian vanation to a flat response. This finding 1s
consistent with Denn’s calculation with a convected
Maxwell model. It is obvious that the features ol
Denn's and Joseph's findings should be similar, since
they use the same constitutive equation,

We can clearly see that after the initial findings of
velocity independent momentum and heat transport
coeflicients about 25 years ago, we are still attempting
to resolve these issues.

Stress-induced demixing

Anocother area, in which we have been seriously
interested during the last few years, concerns the
phenomenon of demixing in polymer solutions under
stress. First of all we have a situation where a solution
with uniform concentration, which is flowing through a
channel, may develop a concentration distribution in
the flow passage. Additionally, it might also happen
that a homogeneous polymer solution, when subjected
to stress, may actually show phase separation. This
peculiar influence of stress 1s not to be seen in low
molecular weight systems. The implications of such
demixing phenomena in polymeric media are rather
profound.

Our interest in this area essentially originated when
we read some appealing arguments made by Melzner et
al.”’?. Qualitatively his argument was that in a moving
deforming fluid the dissolved macromolecules will
become aligned and stretched. This will chanpge their
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entropy and free energy levels. In any flow process, in
which the stress or the rate of strain level varies with
position within the fluid, the molecular orientation and
extension and consequently the free energy will also
vary with position. In order for the free energy at
steady state to become independent of the position,
compensating concentration gradients will be set up,
The net result of all these processes will be able to cause
the macromolecukes to diffuse towards regions of low-
stress levels.

In fact Metzner et «a analysed the concentration
differenice in an adjoining stagnant stream (region 2j
with concentration C, and a flowing stream (region 1)
with concentration €, and showed that the concentration
difference will be given by

E?Z

In C, 1rz 11
C, 2C.kT )

Here k is the Boltzmann constant, t the extra stress
tensor and T the absolute temperature.

Since tr 7 is always positive, this equation suggests
that with increased intensity of the stress field, the
concentration In the stagnant region will become
increasingly higher.

Metzner et al.’? circulated polymer solutions in well
developed laminar flow through a 0.95cm circular tube,
with a concentric cavity in the tube'wall separated from
the main flow by a fine screen. They obtained three
different data points for different values of C, and wall
shear rate (y), as C,/C,=105 to 1.3, while the
theoretical estimates were in the range 1.7-3.2. Tirreli
and Malone’® at the same time had applied simtlar
considerations and shown theoretically the possibility
of development of concentration gradients within the
flowing stream.

In the eariy ‘eighties’, when this problem attracted
our attention, we were struck by the kind of
implications such behaviour would ‘have in actual
practice. Consider, for instance, a capillary in which a
polymer solution was flowing with uniform radial
concentration. It would become nonuniform by the
time it left the capillary. This can be explained as
follows. In a capillary, the shear rate varies from the
wall to the centre. The shear rate 1s the highest at the
wall and zero at the centre. Since the level of free energy
depends upon the shear rate, it stands to reason that
there will be a free energy gradient within the capillary.
Thermodynamic dictates, however, that such free
energy gradients cannot exist and the free energy must
be the same everywhere. Therefore the macromolecules
must move from a highly sheared zone to a zone of low
shear at the centre and create a depletion layer. This
implies that an otherwise concentrated polymer solution
will slide over a low viscosity depleted macromolecular
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solution at the wall. This is amounting to an ‘apparent
slip. One suspected that such phenomena might be
occurring in a number of different instances without
one having realized it. If such concentration inhomo-
geneities were developing all the time, then were we
justified in using the hypothesis of no slip at the solid
surface? In fact we felt that this would be the feature for
practically all ‘structured’ fluid, including suspensions.
This worried us, since no slip hypothesis was routinely
used for solving problems in structured fluids. The
conventional calculations using traditional metheds
had apparently failed to provide the correct solutions.
Such discrepancies were prevalent in the hterature.
Figure 15 shows the discrepancy between theory and
experiment in c¢apillary flow summarized in the paper
by Dutta and Mashelkar’>,

Figure 16 shows the discrepancy between theory and
experiment in coating flows obtained by Gutfinger and
Tallmadge’®. Apparently the conventional approaches
were failing. We felt that there was something wrong
with the conventional way of doing these calculations
by assuming no slip at the surface. The influence of slip
on convective diffusion in structured fluids was
analysed by us in an oft-quoted paper’’, where we
essentially provided a heuristic analysis.

The heuristic analysis was replaced later by a more
detailed quantitative analysis, Consider the flow of a
polymer solution in a capillary. The macromolecules
that migrate away from highly shear regions will also
tend to come back to the high shear region because of
molecular diffusion. In fact if one examines such
gradients in a tube then the radial diffusion flux J, can
be shown to comprise two contributions

oF oc¢
J =D,| c=—+d=]. (32)
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Figure 15, Flow rate enhancement (over that predicted theotetically)
as a function of wall shear stress for low-molecular-weight fluids
{Liosed symbols) and macromolecular Mluids (open symbols). The data
are for capillary as well as film flows, Upper scale is for shear stresses
in fabing film flow. The details can be seen in Dutta and Mashelkar ™2,
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Figure 16. Comparison of experimental [(To) exp.] and calculated
[(T,) calc.] coating thicknesses for plate withdrawal. Open symbols are
for Newtonian fluids and closed symbols are for non-Newtonian

fluids. T, is the film thickness and Ca is the capiilary number. Details
in Dutta and Mashelkar®?2,

The first is the entropic contribution resuiting from a
gradient of the chemical potential junction caused by
the deformation-induced free energy changes and the
second is the usual Fickian contribution arising out of
a concentration gradient. Here Dy 1s the moiecular
diffusivity, ¢ the concentration, F the chemical potential
function, ® a correction factor for concentration-
dependent diffusivity and r the radial distance from the
centre of the capillary.

The question then is that of getting the chemical
potential function F. If the polymer meolecules are
assumed to be linear dumb-bells then this expression can
be derived as

F=(i? ~ 2 1n [quﬁ)z], (33)

This expression is valid, of course, for dilute
solutionts. The relaxation time A can be obtained by
rheological measurements. The important point to note
is that F now depends upon the shear rate y. Therefore
if there is a variation of y across the radius then the
term SF/8r would be finite and we will have a positive
contribution due to the forces of entropic origin.

We did more detailed mathematical analysis. The
limiting case of full development in capillary flow was
considered by us’3, A detailed study of this problem
was justified by the fact that it could provide
information regarding the maximum extent of migration
possible for a given combination of rheological
properties and flow conditions. We solved the problem
for the limiting case of a fully developed concentration
ficld, which we called as FDCF asymptote. We argued
that the size dependence of flow curve was the
characteristic of the developing flow only. We showed,
quite contrary to the prevalent beliel then, that $17¢
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dependence is not necessarily a positive indication of
ship. The observed similarity of concentration and
velocity profiles for different capillary sizes implies that,
ander fully developed conditions, the flow curves (that
means the shear stress-shear rate plots) depend only on
the initial polymer concentration and not on the
capillary size. This was contrary to the experimental
observations. We also analysed’® the role of stress-
induced migration to explain the anomaligs that were
observed in falling films of dilute polymer solutions’®®°,

We later did a very rigorous numerical analysis®!
and took into account the strong interdependence
between the flow field and the resulting concentration
profile. We solved the problem of flow length required
for stress-induced polymer migration in fine capiliaries.
We showed that to achieve a given extent of migration,
which means a given extent of flow enhancement ratio,
the flow lengths required were considerably less than
predicted by prior analysis. In fact we kept on doing
compatisons between the predictions of flow enhance-
ment that we made and the experimental observations
(see Figure 17). One can se¢ that we have been able to
rationalize some of the discrepancies. We have also
considered the influence of such phenomena on heat
and mass transler®?.

Figure 17 shows such comparisons, which rationahize
the type of discrepancies shown in Figure 15, We were
indeed happy that we were able to explain the
anomalies in momentum transfer in slipping polymer
solutions. We turned our attention to heat and mass
transfer also®2.

3

Tw, dynila’cmz

Figure 17. A comparsson of the experimental data on a lew dilute
polymer solutions {0.25% separan AP-30) with convenlional no-slip
calculation (solid line) and Dutta and Mashelkar’s’> FDCF
asymptlotic computations (dashed line).
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Our discussion so far has been biased by the work
our school has done. It 1s also important to comment
on other schools of thought in this area. One school of
thought, based on hydrodynamic considerations, was
propagated by Aubert and Tirrell®. The {lexible
polymer molecule in solution is modelled as a dumb-
bel] {two beads connecled by hinear, elastic spring, as
shown in Figure 3) with the bead velocities given (by
series expansion of the velocity field, V, about ¢ the
centre of the dumb-bell) as

R IRR

F e ¥ — . +-u—-|—_p—:
Vin V(£ = 5 YV + 22 VOV (34)

R IRR

where R is the bead-to-bead vector. Now, the velocity of
the centre of mass is obtained as

i =05(V, +V,)aV.ir) + %RR:?V‘V (36)

ie the molecule “migrates” with respect to the fluid with a
velocity

Vm=i ~V.(}) = %RR:WV (37)

which results in a non-zero flux of the dumb-bells only
in non-homogenous (ic. position-dependent V flow
field given by

JPAClT) V™ (38)

For example, in case of a Couette flow, this
corresponds to a radial flux for the dumb-bell towards
the inner cylinder, counterbalanced by the Brownian
motion, given by

oC

Brown = —[)__— 39
J = (39)

such that the equilibrium concentration profile is given
by

n A
d_C;= - 2C @— (40)

dr r

Figure 18, Bead velocities in an elastic dumb-bell model.
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Figure 13. Concentration regimes for rigid ‘rod-like molecules in
solutions.

Aubert et al®* compared their theoretical results
with experiments of Dill and Zimm®> for concentration
profile of DNA produced in a dilute solution between
rotating concentric cones. The authors considered the
quite good qualitative agreement to be rather fortuitous’
in view of the involved parameter estimation, the chain
model being infinitely extendable linearly elastic dumb-
bell, neglect of hydrodynamic interaction between
beads, assumption of dilute solution, and not reaching
an equilibrium during the time of experiment. Subse-
quently, Brunn has considered many detailed aspects ol
the phenomenon in a series of papers [see, e.g. ref. 86,
87]. His essential conclusions are

’

© Radial migration cannot be predicted in rectilinear
flow through channels, without incorporating the
wall- effects, wherein the walls restrict the number of
configurations available to the molecules near the
walls, thereby causing a layer of depletion.

© Even if the wall exclusion mechanism is accounted
for, the migration effect in tubes or channels is
limited to distances of the order of molecular
dimensions from the wall. This 1s not sufficient to
explain the previously mentioned ‘slip’ effects. This
is in contrast to the ‘thermodynamic’ theory
mentioned before.

© The hydrodynamic theory cannot predict the
migration to stagnant cavity, as mentioned earher.

© In the case of circular flows (e.g. Couette flow), the
hvdrodynamic theory predicts migration radially
inwards, as has been observed experimentally and
discussed above; while the thermodynamic theory

predicts radially outwards migration to the low

shear region.

We conclude that in spite of the possible implications,
no conclusive experimental study of this effect has been
carried out, and also, no molecular mechanism
consistent with the experimental observations i1s avail-
able. Some key issues in this case have been discussed
by the MIT school®®. Difficulties in concentration
measurement in thin layers (<100 ym) of concentration
depletion near the walls, and the problem of the
residence time of the molecules in the flow field (e.g.
capillary flows, wire withdrawal, etc)) being too small to
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Liquid crystalline

permit equilibrium need special mention. While the
effects may be substantial enough to have indirect
implications, direct verification of the theories by
conceniration measurements in thin layers near wall 1s
becoming a reality only recently. Aussere et al.’s®® data
obtained by evanescent fluorescence measurement
techniques are noteworthy. In regard of the above
difficulties, circular Couette flow fields offer a stronger
promise, by way of as large as desired a residence time
of the molecules in a controlled shear flow field. We
have tecently begun experiments with a polyacrylamide
solution in a Couectte flow field where a cavity of
stagnant fluid is in contact with the flowing fluid at the
outer wall,

Before closing, it is worthwhile commenting on the
fact that we are beginning to look at solutions of nigid
rod-like polymers which offer even more interesting
behaviour in this regard. Let us first discuss the general
important features of such polymers, and then discuss
the important features of our theoretical developments
in this regard.

Polymers like poly(para-phenylene terephthalamide)
are extended in one direction along the aromatic back
bone due to their rigidity and para-coupling, resulting
in their rod-like structure. Besides, there are many
examples of naturally occurring rodlike molecules.
These include polypeptides like poly(y-benzyl-L-gluta-
mate), xanthan-polysaccharides, etc. and several other
biological molecules. While segmental mobility of
flexible molecules is high due to rapid bond rotations,
in the case of rigid rod-like (RRL) molecules, the
diffusion of the entire molecule must be cooperative and
hence slow. Mobility of RRL molecules can be
described in terms of three different diffusivities—
translational diffusivity parallel to rod-axis, transl-
ational diffusivity perpendicular to rod-axis, and
rotational diffusivity about the rod-centre.

The very strong molecular length (L) dependence of
the rotational diffusivity (D, ~ L~%) and the vanishing
translational diffusivity perpendicular to the rod-axis of
such polymers in semidilute solutions (sce Figure 19) are
noteworthy, and are important as regards the polymer
migration phenomena. We have analysed the problem in
the framework of hydrodynamic theory concept. We have
obtained results for a rigid dumb-bell (with the flexible
spring replaced by a rigid rod) in a Couette flow. We
have shown®? that the above peculiarities of diffusivity
of RRL molecules result in creation of large con-
centration gradients.

There are many fascinating aspects of the problem of
migration that continue to open up, even in the case of
flexible polymer molecules. One of the key ponts that
may be missed is the question of melecular diffusion of
macromolecules. As we have indicated carlier, molecular
diffusion will try to bring the macromolecules closer to
the stressed surfuce when entropic forces have moved
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them away. It is only recently that it has been realized
that molecular diffusivity of macromolecules does
depend upon rate of shear. Recently we have done
calculations®*®? to provide a physical basis for the
shear dependent molecular diffusivity 1in polymer
solutions based on moleccular models of polymer
solutions. f one incorporates a shear rate-dependent
diffusivity in the analysis then one finds that the level of
concentration gradients that could be sct up will be
very considerably reduced. Mavrantzas and Beris®, in
their recent theoretical study of the wall effects on the
theology of dilute polymer solutions, have also
commented on the role of anisotropic diffusion of
polymer diffusion on migration. Thus Mansficld and
Theodoron®* study the diffusive motion of the polymer
chains pear a solid wall and show that the diffusivity in
the direction perpendicular to the wall 15 several times
less than that in the bulk. Such anisotropic and shear
effects will certainly have to be incorporated m future
developments.

One might wonder as to what are the implications of
such macromolecular migrations in real practice. Well,
they are rather profound and that is why we have been
interested in these phenomena. Consider the case of
secondary o1l recovery in petroleum fields. There have
been observations on polymer retention in stagnant
zones®® and one has not been able to explain these so
far, This is probably directly linked to stress-induced
migration.

The flow-induced concentration diflerences may
relate to physiology also®®. Consider the structure of
endothelium layers in a typical wall, including the
intercellular channels, void spaces and the cavioles,
which are precursors to vesicules. As the artenal blood
strearn flows past into these structures, the macromole-
cular species in the flowing stream could diffuse into these
wall cavities. If this 15 so then the predicted
concentration gradients will influence the diffusional
tfransport of these molecular species from the wall
cavities into other parts of endothehum including the
cells.

[t has been argued that the free cholesterol ester and
the cholesterol monohydrate in atherosclerotic plaque
could be attnibuted to such concentration excesses.
Janssen and Metzner®® cite the evidence of some in
ritro experiments, which show that the uptake of
albumin by the arterial wall in the higher stress range
varies with the square of shear stress, a dependence,
which can be shown to arise from equation (31). The
migration of some of the macromolecular compounds
of blood towards a backwater region may be expected
to lead to many interesting phenomena 1n view of the
fact that we are dealing with very slow processes in
physiology: possibly for some species having limited
solubility, even a minor concentration excess might be
quite significant.
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We have earlier alluded to the problem of instabilities
in polymer flows and specifically referred to the
sharkskin effect. Chen and Joseph?’ tentatively invoke,
as an explanation of sharkskin, the hypothesis that high
stresses near the capillary wall could cause migration of
polymer from the solid wall. Equivalently, low-
molecular-weight components can become concentrated
in a thin wall layer. They show that the stratification of
elasticity accompanying such polymer migration pheno-
mena can lead to short-wave hydrodynamic instabilities
under some circumstances. These instabilities would
presumably propagate to the die exit and create surface
distortions.

There are perhaps other implications of the migration
phenomena, that we have not even recognized. It is
certain that this fascinating field will continue to attract
the attention of the researchers in the coming decade,

Concluding remarks

In the foregoing, we have described some aspects of the
fascinating behaviour of non-Newtonian fluids. The
empirical approach to the description of such fluids has
now given way to a more fundamental molecular
modelling approach. We have given a bird’s eye view of
the recent advances of modelling in this area,
commenting at the same time on the new frontiers of
research that are opening up.

Further developments and refinements in molecular
modelling #ill continue to be made. However, as an
engineer, [ find that even the existing knowledge base
will find interesting applications as regards the
elucidation of transport problems of direct interest to
engineers. Let us take, as an e¢xample, the reptation
model. Consider, for instance, the question of the
prediction of the life time of a polymer particie that
dissolves in a solvent. We have shown®® that the
interesting coupling between the cooperative diffusion
of the physically entangied network during swelling as
well as the reptation of the long chain molecules from
the swollen polymer leads us to an interesting
conclusion, namely that the life time of the dissolving
particle will be independent of the particle size after a
minimum size is reached. This is in sharp contrast to
what is observed in ordinary matenals, where finer the
size, faster is the dissolution. The basic ideas of
reptation have also been used very effectively in
predicting the welding behaviour of two polymers that
are brought togcther. Recently we have used”” such
methods to show the difficulties one will encounter in
welding of rigid rod-like polymers, an observation,
which is of great importance in the processing of melt
processible liquid crystalliné materials. Due to want of
space we have not alluded to many of these interesting
findings. But it is important to remark that an
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engineer’s familiarity with these basic concepts will help
him enormously in analysing and designing systems
with insight and perception.

In this article, we specifically considered three topics
related to instabilities in polymer fluid flows, flows past
submerged objects and stress-induced demixing of
polymeric fluids. The idea was not only to bring out the
progress that has been made and the problems that still
remain unresolved, but also the difficulties one faces in
even the conceptual handling of some of the problems.

As we have pointed out, although great deal of
nrogress has been made in numerical modelling of
complex flows of non-Newtonian fluids, yet we find that
an apparently simple problem of the flow of a very
dilute polymer solution of few parts per million of
polymer past a cylinder has remained unresolved after
25 years of the discovery of the velocity independent
heat and mass transport coefficient behaviour! How
should engineers proceed then? By using heuristic
arguments and deep physical insight, engineers will
have to find their way through. The superb engineering
analysis!'®%-1%1 on drop break-up and coalescence in
turbulently stirred dispersions of non-Newtonian fluids
made by Prof. Kumar and Prof. Gandhi of the Indian
Institute of Science 1s a brilliant testimony to the way
engineers find solutions to difficult problems, even when
they have to deal with such complex flows!

What about the future? Clearly a more detailed
understanding at the microscopic as well as macroscopic
levels will be needed to understand many complex
phenomena associated with many structurally complex
materials. One already sees a great deal of progress n
this direction. Sophisticated flow visualization experi-
ments, numerical experiments (with powerful supercom-
puters), as well as in situ experiments on studying the
dynamics of motion of polymers at a moclecular level
(see, for example, the recent study by Akatani et al.'®?
on solid state NMR of a polymer melt under shear) are
certainly going to lead the way in our understanding
the beauty of these admittedly bizarre, but certainly
most fascinating fluids, which exhibit non-Newtonian
behaviour.
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