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We review the coupled “luster (CC)_Lmethn:]s for sifuat'ions. Particular!y of note are the develnp:rzlings
calculating static properties for closed and open-shell wnt!1 incomplete mult:determ?nantal model spaces l"
systems. In the respense-type formulations, properties of This has made the detailed Gpen-sh§11 electronic
various orders are derived as energy derivatives of corres-  Structure calculations more facile and rigorous!® 717,
ponding orders. Among various CC response versions, the  Although the structure of the theory becomes much
stationary formulation has the important advantage of more complex when the wave operator acts on a
an inbuilt (27+1) rule by which energy derivatives of  multideterminantal mode) space, it is extremely im-
higher order can be calculated using lower order  portant to start from such a model space in open-shell
Elerivative amplitudes. In this "ﬂie“f we  Stress the  or near-quasidegenerate situations to avoid the potential
imporfance and the difficulty of using a statienary divergence problems arising out of intruder states, This

formulation, We also discuss the first multidetermi- o ,vributed to the nondynamical-correlation involved
nantal model space based CC response theory.

it v in the open-shell states, CC methods have been
extensively applied to the calculation of ground state
1. Introduction electronic energy and its gradient’®~2! and in recent

years, the multireference CC versions have been applied
CoupLED cluster {CC) methods have been established as  to the difference energy calculations® 13717-227228 and
accurate many-body methods to describe electron potential energy surface (PES) studies®®. There have
correlation! 73, Written in second quantized notation  been excellent reviews on the CC methods for energy
where the hamiltonian does not explicitly depend on  calculations? 3% °1.
the number of particles, the CC {otmulations are parti- {n comparison to the above developments, there has
cularly suitable to describe neutral systems and their  been much less work on the calculation of other
ions simultaneously. These methods have the attractive  electrenic (static and dynamic) properties like the dipole
feature of satisfying the desired size-extensivity property moment, polarizability, dynamic dipofe polarizabihty,
(proper scaling with respect to the number of  etc. The formulation of these has been investigated and
particles)’. In addition, this compactly sums up the  many general suggesiions for handling property calcu-
correlation contribution of important terms to all  lations are emerging, particularly in view of desirability
orders in perturbation. This is achieved by the action of  features of stationanity, generalized Helimann-Feynmann
an exponential wave-operator on a suitable model  (GHF) principle, etc. In this context, different treat-
space reference function; depending, however, on the  ments for a stationary CC method and its response o
choice of model space (single or multideterminantal),  the external field have surfaced. Understandably, they
the nature of the ansatz and its consequences change.  have been compared with the nonvanational method
There have been a wide range of methods for  and the traditional expectation value approach. Recently
calculating varicus atomic and molecnlar properties  these have been investigated into. 1t may be of great
within the framework of CC theory. Traditionally, the  interest to bring all the current developments in this
ponvariational method of projection was used to derive  area on a common platform and analyse their structure
pertinent equations for energy calculations for closed-  and inter-relationships. The present work 1s an attempt
shell systems??. Subsequently varational ways of  in this direction and its purpose is to present a com-
determining energy and wave function were proposed.  prehensive review of the CC methods for property cal-
For closed-shell systems the CC wave operator acts on  culations. We will also mention in the passing a few
a single determinantal model space {Restricted Hartree—  actual calculations performed in this area. So f{ar, to the
Fock). There have been developments {(in nonvariational  best of our knowledge, no comprehensive teview in this
framework) starting from an unrestricted Hartree-Fock  area exists. Traditionally, propertics are calculated
(UHF), or projected unrestricted Hartree~-Fock (PUHF)®  through the route of expectation value-like quantitics
or quasi-restricted Hartree-Fock (QRHF)” model spaces with respect to the reference ground state wave
to suit the open-shell cases. With the development of  function®, Martensson-Pendrill and Yonerman®? have
CC methods starting frorn multideterminantal model  recently suggested a general proccdure for evaluaton of
spaces? 717, they have attained the status of far greater  matrix clements for an operator between CC wave
ulility encompassing the more complex cases of open- [unctions. In expectation value approach for property,
shell correlation as well as pathological closed shell  the ground stale wave function iy commonly found by
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the nemvanational method of projection. However, the
expectation value feads to a nontermipating series in
cluster amplitudes. This line of calculation has been
pursucd by Noga and Urban?? and the eflfect of
truncation has been studicd numencally. Alternatively,
a tosponse appreach of calculating the properties of
various orders can be formulated. Dierchsen et ul??
observed for some emperical Cl calculations that the
response approach 1s preferable (o the expectation
values when the GHF 15 not satisfied. In this class of
response methods, fintte field calculations have existed
for a long time. This, howeser, entails the calculation of
the derivatnves numerically, Another related work was
done by Koch and Jéyensen®S who determined linear
and quadratic response functions for molecular systems
described by a CC-response state. Quantities such as
excitation energies, transition matrix elements, 2nd and
drd order properties were then derived from response
functions. Recent interest has been focused on analytic
formulation of CC-response approach. In this approach,
moiecular properties of various orders are identified as
energy derivatives of corresponding orders®®. Deter-
minaton of energy derivatives involves the calculation
of analytic denvatives of the wave function. Here again
both vanational and nonvariational approaches can be
pursued (as 1n the case of ground state energy calcu-
lation). The nonvariational response’’*® does not
senerally satisfy the generalized Hellmann-Feynmann
{(GHF) theorem. However, some approximate schemes
within this approach satisfy the GHF theorem as
already observed®®. We will review these interconnec-
tions in the course of our discussion.,

A major theme of our review would be to discuss the
response approach for the calculation of properties in
the variational framework. This approach has many
desirable features. For example, since it uvses the
stationary approach, there is a possibility of extracting
bounds for various energy derivatives or properties.
Another very attractive feature is the (2n+ 1) rule built
m the variational method so that calculation of higher
«n+1) order properties needs the knowledge of
stationary cluster amplitudes only up to nth order. This
has been formally shown with derivation of the
functional form in one of our recent works*® and we
will briefly discuss it in the later part of this review. The
GHF theorem is a special case of the (2n + 1) rule which
1s more of a general utibity from a computational point
of view as has been demonstrated recently. In the
context of a stationary CC response, various forms of
functionals have been studied. We would discuss mainly
two types of functionals: a) a nermal Euler type, and
b) an extended coupled cluster type. We advocate the
use of the second type of f{unctional. However,
wrespective of the type of the functional chosen, a
major difficulty arises in the scheme of variational
response, namely, the redundancy in the numbct of
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equations in case the cluster amplitudes and all therr
refevant derivatives are not truncated to a uniform
degree. Recently, we have been able to solve the
redundancy problem*!:*? and we will focus our
attention on this aspect later.

While for closed shells, single determinant-based
response CC theortes have come to a reasonable
standard of development, there has been only a recent
interest 1n multireference CC-response theories®3 44 [n
fact lor open shells, variational {ormulations are
considerably more difficult even for the energy
calculations, aithough the problem has been tractable
in Fock-space*”. Naturally, such formulations have not

yet been translated for response-based methods for
properties.

2. Methods for energy calculation

Coupled cluster methods for energy calculations

The 1dea wunderlying the coupled cluster theory
onginates from the Linked diagram theorem which
states that the exact electronic wave function and
energy can be written as a sum of only linked diagrams
or, equivalently, the wave operator as an exponential of
cluster operators. This ensures correct scaling with the
number of electrons or size extensivity. Cizec? firs
presented a diagrammatic approach to derive explicit
working equations for the CC method. In this method,
the exact wave function W is generated by the action of
an exponential operator on a reference function which
1s usually chosen as the HF closed shell function (®).
The linked excitation operator T creates excitations

from the independent particle reference. For a n-particle
system, I 1s a sum of operators

T=T,+T;+ - +T,, (la)

where 7, is n-particle excitation operator. The expres-
sion for two body T, is:

1 ,
Tz:ir Zﬁ Cab | iy, {a* b* jil. (1b)
+ 14

The operator amphtudes {7} are different from the
DCI coellicients C2’. The relation between the CI
excitation operators and cluster operators are as follows:

i
C3=*-T3+TIT3+§;TI T!. TI' “t}
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C,, C, and C; are single, double and triple CI excitation
operators respectively.

The Schrodinger equation for correlation energy can be
writien as

Hye  ®,=AEeT d,,
Y=eTg,, {2)

where the exact wave function 1s assumed to obey
intermediate normalization, ie. (¥|® > ={(P,|P,>=1.
H, is the normal order hamiltonian defined as
H,=H-—{®,|H|®,). Vartous different versions of the
CC method provide different expressions for correlation

energy and different ways of solution of the amplitudes.
They are discussed here in short.

Nonuvariagtional method

In the traditional nonvariational approach, the starting
equation is:

H. ©,=AE ©,

where H_;=¢&" He’, (3a)
projecting on the left by ®F we get
AE={Dy|H | D). (3b)

The amplitudes are obtained by solving equations
provided by projection of equation {3a) with difierent
virtual staies. These form a closed set of coupled non-

hinear equations in t coefficients and are to be solved
iteratively.

Stationary methods

A stationary recipe to find out energy and amplitudes
was given by Pal et «1*® In this method, a suitable
energy functional E{f) is constructed and is made
stationary with respect to the <cluster amplitudes
contained in the functional. Application of stationarity
conditions ' I;/ct =0 provides all the neccessary equa-
tions 1o calculate the optimum amplitudes. Energy is
then calculated with these amphtudes.

Stationary or vanational methods have a great
attraction. They have furnished bounds to wuseful
chemical quantities, In the case of property calculations
using variational response, the important theorem of
GHF is satisfled. Connected with this is the 2n+ 1}
type rule which cssentially states that the energy
derivative can be caleulated to a much higher order
than the knowledge of the dernatives of the cluster
amplitudes n the wave funcuion. A stationary recipe
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may furnish useful bounds to higher order properties.
In the MBPT context, the formulation of such bounds
has been attempted recently?*’. There are however
many drawbacks related to the variational formulation
of the CC method unhke linear variation methods like
the Configuration Interaction (CI). CC-based variation,
being nonlinear, does not have an eigenvalue-equation
structure. Inconststent truncation leads to loss in the
variational bound property. The Euler type functional
1s nonterminating and the application of stationary
condition yields disconnected terms. Arponen and’
coworkers*®~>° proposed an Extended Coupled Cluster
(ECC) type functional which bypasses both the
problems of nonterminating series and that of dis-
connecled terms although by doing this the burden of
computation 1s increased because of the presence of tweo
different sets of amiplitudes in the functional. Despite
several problems, however, it may be sufficient here to
stress the importance of using a variational approach.

In the following, we dwell on various functionals and
their interconnections.

Functionals for stationary coupled cluster approach

The Euler type functional is written as: (PIHWD/(WVIW).
For groundstate energy, one needs to make this
functional statlonary with respect to the parameters m
the wave function. Using a exp (T} CC wave function,
the functional, on expanding by Generalized Wick’s
theorem (GWT), can be shown to yield

E={(Dyle™* HeT Do), . (4)

The functional is a nonterminating series in cluster
amplitudes and can be made stationary with respect to
these amplitudes. i we truncate the functional to degree
n, using the stationarity we can write the stationary
energy as a functional of the cluster amphtudes of
degree (n—1). Stationary conditions to this functional
yield disconnected terms when the diffcrent n-body 7's
are used. In ithis functional, a particular 737 may be
connected exclusively to a T7/T vertex and when the
stationary equations are obtained by deleting a 7°/7T
vertex from the linked diagrams of energy, the 7%/T
vertex exclusively connected to the deleted (or ditleren-
tinted) vertex becomes disconnected. A response
approach built with this functional would inherit the
above problems, For calculating the higher order
properties, one needs an addiional set of statlonary
cquations to caleulate the dervative of the T-ampli-
tudes. This set of equutions is the feature of the
response type method, We will sce in section 4 that in a
stationary approach, this leads to a redundancy in the
equations in a genersl truncation model. The book-
heeping of the equations may be by passed. however, by
a careflul Mrategy,

hHy
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There have been developments bascd on a related
functional using the Unitary Coupled Cluster (UCC)
ansatz™! 7% Vanious versions of the UCC have been
attempted and in the following we summarise some of
the conclusions. UCC wave function used in the non-
variational context ensures a hermitian effective hamil-
tonian. Nonvariational energy expression with this
ansatz may be written as:

E = (D, ]e" He | Dy)

_ (5)
= (D&~ He'| Dy).

The UCC (n) method, proposed by Bartlett et al’?,
howeyver, eliminates the problems of disconnected terms
by expanding the energy functional in orders of pertur-
bation theory and selectively including terms whose
initial contribution appears at a given perturbation order
{n). This way one can make sure that disconnected
terms 1n stationary set of equations are cancelled and
the energy functional at the stationary point becomes
size extensive.

Another functional, known as the ECC functional,
was recently suggested by Arponen and coworkers®® 59,
This functional deals with the dual space of bra and ket

vectors. The form of the functional for any operator A
may be wntten as:

(A=Y’ A1)/ (¥ | ¥

- (DyleT AeT D,
(Dole” eT{dy)

(62)

It was shown*® that this expectation value may be
factored into a completely linked and connected
expression. The linked cluster theorem essentially states
that (DyleT e’ /(D,|eT eT|D,> can be written as
(Do le’’, where T” is a linked hole-particle destruction
operator. In terms of diagrams, it has structural
stmilarity with a T’ vertex with a different set of
amplitudes. The entire functional becomes a sum of
connected terms yielding

(A)={Dole" e TAeT |0, . (6b)

With the structure of e" T 4eT the functional ¢ 4>
leads to a terminating series. For finite particle
operator, (e~ 7 AeT) terminates to a finite order and this
contributes to the terminating structure to (4).
However, there is still the possibility of a T exclusively
hoked to a T-vertex (while all the T-vertices must be
connected to the operator ﬁ) and hence the appearance
of disconnected terms in the stationary equations.
Later, Arponen dcfined two sets of transformed
amplitudes ¢”, g in terms of which the {unctional may
be written as

670

(AY>=(Dyle” e " Ae® 1%, p, , (6¢)

where DL means double linking structure. ¢ vertices, by
definition, are all connected to the operator 4. ¢”
vertices, by construction of double linking, must be
either connected to the operator A or to two different ¢
vertices. The latter climinates the possibility of
appearance of disconnected terms in the stationary
equations. This form of the functional is inherently
superior in terms of both the terminating structure and
size-extensivity points of view. One important difference
15 that the functional has a nonhermitian structure.
While the o vertices are always linked to the opeérator,
¢” vertices have only the above mentioned double
linking structure, It seems that it is impossible to retain
the above desirable feature within a hermitian structuce.
A response approach has been built with this structure
which we have termed bivariational response33-36,

3. Nenvariational response

In the CC context, nonvariational methods have always
been more traditional. Monkhorst®” suggested that as a
response of the external perturbation, the static
properties may be calculated in a nonvariational way.

The field dependent hamiltonian and the corresponding
CC ansatz may be writien as

# (A)=H+ 10, (7a)
Y(i)=eTX,, (7b)

so that the nonvariational expression for energy
becomes:

E(A)={Dle"TWZ(1)eT M| D). (7¢)

Power series expansions of E(4) and T(1)} are
introduced as:

EQ)=EO+ JEV+ 2ED 4 ... (8a)
TA=TO+3TV+ 22T+ ... (8b)

where 1/i1[E“] is identified as the ith order property.
The nonvariational expressions for E®

a E(4) (9a)

E =
5&‘ F =1}

contains cluster amplitudes 7 ... T The equations
to determine these cluster amplitudes are given as:

<¢,# ;E]:ﬂ-TH}ﬂ%‘sﬂ(i)eTu]:l o ([JD>=U (9}3)
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®, and ®* are the reference model space determinant
and virtual space determinant respectively. In a CCSD
model, including the orbital relaxation, Bartlett and
coworkers®® have used this method to calculate dipole

moment, polanizability and hyperpolanzability for small
systems hike HF, CO, etc.

For an exact state, where 2all possible clusters
(T, --- T,) for an n-body system are taken in determin-
ing T(#), the first order property satisfies the GHF
EW=¢0}). For approximate wave function, though, this
1s true only under certain specific truncation scheme?9%2,
In a later work>®® we have shown that if one takes a
linearized nonvariational energy functional with T=T,,
the expression for energy derivative and the equations
for cluster amplitudes at each order become identical
with those of a bivariational response under quadratic
truncation scheme. The latter satisfies the (2n+ 1) rule.
Thus within such a scheme, the nonvariational
expression for energy derivative also satisfies the more
general (2n+1) rule. While a nonvariational way of
calculating energy derivatives satisfies (2n+1) rule
under specific conditions, a variational response
automatically satisfies this®’

Noga et al*? numerically studied the Hellmann—
Feynmann contribution of the first order energy
derivative EM They showed that the first non-HFT
terms arise from a wave function contribution which is
one order higher than the last complete order of the
wave function (e.g. for CCSD, they come from T;).
Their study on the effect of truncation on the
expectation value showed that while cantributions from
T3 0OT,, OT, and mixed terms like T} OT,, T3 OT,
are considerable, contributions from 77OT,, T OT,
are negligible.

4. Stationary response

The basic approach of a stationary response method
and its limitations are independent of the exact nature
of the functional chosen although to avoid redundancy
problem and to achieve highest efliciency {satisfying the
2n-+ 1 rule), the method has to be carefully executed. In
the following, a critical analysis of the approach and the
current state of art in this theme will be presented using
a simple Euler type functional as an example. We start
by giving the form of the energy functional E(4) in the
presence of an external lield.

E(})= <¢:~,:, |N [e’” (4% (Ayel '-'“] | 4:1:-.[;.>JL .

Subscript L denotes that only linked or connected
diagrams need be considered. N[ ] denotes normal
ordering of the operator products contained in the
bracket. In stationary response, the functional E{4), the
ansatz ¢T ™ and the cluster amplhitude operator T(4) are

(10)
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expanded in power series of A as:

E(A)nE[U]_}.AE{U.}.AZE{Z)_.*_ '“+A"E{"]+ -
ET[A];"—C{D}‘*'AC{”'I'AZ C(Z}_I_ . _{_Aﬂc(nj_}_ oo,
TA=TO+ATO+ 12T 4 o 47 4

such that any nth order property is now identified as
n!E®, where E™ s nth order derivative of the
functional E{A) with respect to 1 at 1=Q, §C" are
related to the {77} as:

CO=eT®, Ci=T(TO)
n—1 k

C{ﬂ}:: [ T(H} + Z T{k} T(m} akm
k=1 m=1

n—2 i m

+3 ¥ Y T® e 7l ghmi __Jierm;’

k=1l m=1 =1

coefficients {a*"} are such that value of =1 if k#m;
dm=1/2 if k=m d"™=1 if kfm#£l =13 if
k=m=1; a*"=1/2! if any two dummy indices are
same.

Before application of stationary conditions, E®
contains the amplitudes (T®...T™), These may be
obtained by solving either of the following sets of
equations which are complex conjugates of each other.

SE(R)OT*W=0 (i=0---n), (11a)

SEA)/0TH=0 (i=0...n) {11b)
Since E™ contains the amplitude T as the highest
order derivative amplitude along with all the lower

order ones, the equation (11a) assumes a triangular
form

JE(4) i oEV
aT+[t} Z j'J&T*+|[;j|

(12)

Each of the above n+ 1 equations has a power series
structure. The equations hold good for all 2, hence to

solve for n+1 vanables 7@ .~ T we obtain a set of
"*1C, number of equations

EEL“
AT+ o

=), (13)

This redundancy tn the number of equations disappears
in the case where each T 1s truncated consistently up
to a fixed k-body, thus consisting of all the amplitudes
up to 7, at cach order. It can be shown as a
consequence of the exponentiad nature of the ansatz
that these VT UC, number of equations reduce to a
unique and sufficient set of (1 + 1) equations. There is &
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great amount of equality in these set of equations®’. In
View of its importance 1 a varnastional response theory,
we present a general proof. EM is a homogeneous
polynomial and can be wniten as:

n—1

[ = Cim Hf‘m + Z C{H[H Crﬂﬂl+(j Cm—l-klj_
k=10
(14)

D:fferentiation of E™ with respect to T, ¥ gives p-body

open diagrams which trapslate to the algebraic
equation:

{HEM) x—q—1

S Cm-qu CID‘J +

C[Iﬂ [ﬁ Cin—q—k]_l_{jC{ﬂ—li'“l-k}l (15)

It 1s obvious that as long as (#— ¢} 15 constant, the p-
body eguations (15) will always have identical terms.
Thus,

{:-E!nl EEtn- 1) E!Ein*qu =0 (16)
E‘T; () ET"‘W"‘H {?Tﬁ*tﬂ} ’

This equality will provide the set of equations {13) a
band diagonal structure so that there remains only a set
of (n+1) unique equations. The set of equations
CEM éT{"=0 (i=0---n) is hierarchical in nature: the
i=0 part simply furnishes 7% amplitudes and keeping
them fixed, the i=1 part yields T'" amplitudes etc.
Identity of equations CE®/0T, =0 and JE™)/
cT =0 for (n—g)={(n"—q') however breaks down if all
the cluster operators and their derivative operators are
not truncated at the same level of approximation giving
rise to a redundancy in the number of equations. In the
following, we will discuss this problem and propose in
tmproved variational strategy to be implemented for a
flexible trancation scheme in CC response approach for
first and higher order properties. Let us first take a
simple example for calculating up to first order
derivative amplitudes {T"} in a sub 2 truncation

scheme. We show that there is a unique set of equations
in this case.

(O - 0 0)

T{u=-‘r{1n+ TIZIJ_ {17

CE™ T =0 with m, n. p=1,2 provide the following
two scts Of cquations.

1. The onec-body set:

= (18a)

612

AE
°T} TR, (18b)
OEM}
5]-:'{1}:0- {18c)
2. The two-body set:
CE®
‘?T; [{;}_G! (19&)
CEWNET T D=0, (19b}
CENV/ AT =0, £19¢)

Since the truncation level is comsistent for 79 and
T'Y, the band diagonal identity holds for both the pairs
of equations (18a,¢) and (19a,c). As a result, one can
obtain a unique set of 4 equations to solve for T\,
T{zﬂl’ T{ll}- T"}_l].

In the case of an inconsistent truncation scheme,
either T or T will have its p-body (p=1 or 2)
amphtudes dropped. We continue with our earlier

example and assume that T'* has only two-body part,
Le.

T{D}: T{lﬂ}+ T{f}, {20}
T{I}: thl}n_

As a result, out of the previous set of six equations
(18a,b,¢) and (193, b, ¢):

i. equation {18c} will now be absent;

2. equations (18b}) and (19b) now will no longer contain
T\ containing terms:;
3. equations (18a),
unaffected;

4. identity of the pair equations {19a) and (19¢) will
remain intact.

(19a), and (19¢) will remain

What we have in hand now 1s a redundant set of five
equations for solving only three variables 71, 7% and
T%). Thus we have to keep either of equations {19a)
or (19¢), which are anyway identical and then choose
any two from the remaining three equations (18a), (18b),

(19b). To pick up the right option, we may now look at
the functional forms of E® and E,

E{l’}] zfu}l[T{Im TE‘!m)-

E“]:'-f‘”lrff“T'}”T[;_”} [2“
If we retain the equation (18a) and choose one of the
two cquations (I1Bb} and (19b), then together with

equations (19a) or (19¢} we obtain a necessary set of
three equations which can be sclved hierarchically but
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this choice suffers from ambiguity. Since E*! contains
both T and TY, it is not clear which one of the
equations (18b) and (19b) 15 to be selectively dropped
and why, However, f we drop the equation (18a)
and imstead take both equations {18b) and (19b),
then along with equation {19¢) we end up with the
correct set of equations. Similarly, for any pgeneral
truncation, since E“? contains all the 7 amplitudes and
their derivatives, stationarities of E™ with respect to all
possible amplitudes form a sufficient set though the
hierarchical structure is generally lost.

In retrospect, it may be said that this process is to
choose the functional of variation for calculating the
stationary amplitudes and their denivatives. From our
above analysis we find it consistent to select E as the
given variational functional for calculating optimum
cluster amplitudes of 7O, T T,

With the knowledge of the stationary amplitudes
up to a given order n, one can obtatn property of much
higher order (2n+1). This 1s a specific advantage of
stationary CC response method for the calculation of
higher order properties. In fact, the GHF theorem is a
special case of the more general (2n+1) rule. In the
following, we briefly prove this rule and write a general
expression for (2njth and (Zn+ Ijth order property
using nth order stationary amplitude derivatives.

It 1s apparent from the equation (14) that the
expression for EY¥™ would contain at the most up to the
coefficients T ¥ 3"/TCm [f we collect terms in EP®7
which have on the right or left side of the operator A/0
derivative amplitudes ¢t of the order i greater than n
and separate the rest in D, we may write

2n 2n
E{Zr:} — Z (B{En-e} T[;}) 4 z (T+ {:}B+ (zn—:]}_{_D'
e=n+ 1 =R+l

(22)

The remainder D containg terms involving ¢/t ™ and
lower order derivatives. In the expression for E®¥™ in
equation (22), the coeflicients in the block B~ must
contain only up to the (n—1)th order derivative r's.
Thus for each amplitude ¥ with i>n, the corres-
ponding block of coefficients B"™% is unique which, as
explained above, comprises only of several jower order
derivative amphtudes ", j<{n—1). Thus each term
within the aircular brackets of equation 22 is linear with
respect to the amphtudes (', i>n. The remainder D,
however, contains terms lincar as well as noalinear 1
nth and Yower order t derivative amphiudes. Using the
identity among the sets of equations for fixed (m—p)
we choosc the following set of cquations for the
calculation of derivative amphtude /%, (... and
their adjolnts.

{:". E{ 2n)

(’)THJ

= {} i=(ﬂ+l}"*2ﬂ, (23:.1)
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BEC
Fian ={), (23b)
PE®
G0 =2 (24a)
(‘}E[IH}
OT + (n) = 0# (E4b]

If the equations (23a) and (24a) are multiplied with the
corresponding ¥ and t*%s (with i .-matching the
equation indices (#+1), (n+2)---(2n)) and the resulting
expression put back in the expression for E®, we obtain
at the stationarity E¥"=D_As D or E“" would be
nonlinear, in general, with respect to the amplitudes ™,
the application of equations (23b) and (24b) would not
remove these variables in E %% at stationary points, but
would serve to simplify the expressions further. Similar
analysis can be made for the stationary expression for
En+ 1 Following the above lines, E*"* may be written
as

Zn+ 1l

E{2n+1]= Z (Br{.?_n-i-l—:} T{f})_+_

i=n+1

2n k1

Z (Br+{2n+‘l — i) T+{:’J)_|_D!'

i=n+1

(23)

The terms within the circular brackets are linear with
respect to the amplitudes t$’, 1>n and D' contains tenns
linear as well as nonlinear in nth and lower order
derivative £ amplitudes. In the lines of the above
arguments we may use the following (n+1) set of
equations and their adjoints.

EE'(ZH+1] E.!E{lﬂ'!'ll
w0 Py =0

i=(n+1) -~ 2n+1), (26)

so that the resulting stationary expressions for E“"*Y
contains only D’. D' contains the amphtude sets ™, i=0
..-n. In this case the set of equations ((FE@"* 1/t™y=0,
(CE@* V)t h=0 peed not be considered. This is 1n
contrast 1o the case of E“™ where the stationary
equations with respect to the amplitudes ¢ were
necessary and served to simplify the remmamder D. In any
case the point.is that for the calculation of (2n)th and
(2n+ 1)th order derivative of energy, the amplitude
derivatives up to the nth otder are sufficient. This

sums up the (2a+ 1} rule for computing the properties.
For the practicabiity of numerical caleulation, if we

systematically truncate all the energy dervatives up to a
total of quadratic power of amplitudes, the general
expressions for K9 and £ become:

L0 o <(Dn/?1 tAm G e “.- (I}L‘}‘ (27a)
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Lr:ﬂ-!- . ((Dﬁ T+ml(‘j Tint;"bu>. (27b)
We have numerically tested the (2n+ 1) rule lor a few
model systems {HF, N,, CO) to calculate the dipole
moment, a foew polarizabilitics and hy per-polarizababtics.
The results agreed quite well with those of exact CCSD
nonvariational non-refaxed calculation of Bartlett and
conorkers*®, Fyen with quadratic truncation the values
agree quite well with the non-variational calculation as
well as with the experimental number®®, These results
are presented in Tables 1 and 2.

The basic approach of a stationary response method
and the consequent 2n+ 1 rule is the same irrespective
of whether variational or bivariational response has
been used. However, a special feature of the vanational
response is that i case the cluster amplitude (or 1ts
derivative) comprises of more than a single k-body
term. then the expression for energy derivative may
contain terms lke T;*P 0T and T3¥OTY
which, on application of stationarity, give rise to dis-
connected terms like O 79, Numerical calculations
however show that even if the disconnected term 1s
dropped from the equation for solving the cluster
amplitudes, the results are not much affected*®. In
bivariational response such terms are altogether absent.
In the special case where the functionals are truncated
at quadratic degree of amplitude and 1t is assumed that
amplitudes in both cases comprise of a single k-body
term, the expressions for energy derivative and the
equations for cluster amplitudes are identical n a
variational and a bivariational response. Additionally, if
one imposes the restriction that only those terms which
have a maximum of one T amplitude on either side of

Tl

the vertex H are to be included in the expression for
energy derivative E', that is,

E["}:[T+iﬂ}ﬁ(l+ T]]+[T+ [n-ll{ﬁ T“l.*_(j(l_{-r}}]

n

~ 2
3 Z T+{l}{ﬁ Tln=k}+ O‘ T{n—l —k:l} + Dq T[n}_l_a"‘ T{"*“]‘
k=0
(28)

then the stationary equations for cluster amplitudes
turn out to be identical to those of a nonvariational
response approach. At the stationary point, therefore,
the expression for E™ will also be identical to the
nonvariational eapression for nth order property.
Under this approximate scheme, even the nonvaria-
tionally derived expressions for first and higher order
properties obey the 2n+1 rule (of which GHF is a
special case}.

5. Multi-reference nonvariational CC
approach

response

The calculation of properties via the CC approach
either through the expectation values or response
approach has been much more intensely pursued for
closed shell systems than for the open shell ones.
However, if the open-shell systems can be described as
starting from an adequate single determinantal model
space the closed shell CC theories can be apphed to
these systems with reasonable degree of confidence.
There are still the cases where the model spaces cannot
be described by a smgle determmant. These are more

Table 12, Properties of hydrogen fluonde (DZ basis)

Vanational Nonvanational
Property SCF (Ndis=0} (Ndis=1) Nonrelaxed® Expt
Basis I¢
0936 0 897 0 894 0896 0.707¢
4002 4277 4525 4179 6 40°
~17.59 ~2305 ~ 2698 —1752 —
0.739 0 888 0 890 0811 5 oged

e S—
AN results n atormic uwnils; °From reference 58, *Double zeta (DZ) basis rel. 60;
dReference 61, *Reference 62; fReference 63 Ndis=0 means disconnected terms have
been mcluded in the cluster amphtude equations, Ndis=1 means disconnected terms
have been ignored in the cluster amplitude equations.

Table 2. Propertics of hydrogen fluonde (DZP basis)

Nonvanational®

Yanational
Property SCF (Ndws=0) (Ndis=1)  Nonrelaxed Expt.
Baws [1*
0 807 0754 (0750 0756 07074
4.294 4626 4967 4570 6 40°
— 1447 — 20 %40 ~ 25 690 — 1536 _
1.557 1 740 1780 1638 5o8¢T

Nl il

2All results m atomuc unils, °From reference 58, ‘Double zeta plus polanizanon (DZP)

bass; “Ref. 61, Ref 62 'Ref. 63,
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complex cases where clectron correlation is predomi-
nantly nondynamical and has to be introduced through
a multideterminantal model space. The open shell
electron correlation, in general, encompasses these cases
slthough this ts only a loose definition. One may say
that such a multideterminantal model space may be
necessary for many pathological closed shell systems, in
particular, those which are far away from equilibrium.
Extensive review of the nature of electron correlation to
open-shell systems has been made>!.

It is necessary to develop a response approach for such
multideterminantal model space-based CC approaches
(known as MRCC response theories). However, 1t 1s more
complex to introduce response for MRCC wave function.
In particular, a variational response approach will have
far more complexities. Variationai MRCC approach for
energy calculation has been attempted in Fockspace®”.
Only recently a nonvariational response has been done
with a MRCC wave function*® and we will review this in
the course of this section, The development of MRCC
response theories is on g line similar to the MRCC
theories for energy calculations {in zero field) where a
manifold of energies are obtained In a single-shot
calculation as eigenvalues of an effective hamiltonian
defined over the model space. However, when we
calculate properties as a response to the field, we will
observe some very important differences 1n the structure
of the theory.

As a rtesponse to external fields, the combination
coeflicients of the multideterminantal model space are
allowed to vary. The orbitals may also be varied, but this
varation can be taken care of by the standard coupled
perturbed Hartree-Fock (CPHF) method. Instead of
orbital variation, we will discuss here the Fock space
approach where a suitable core is chosen with respect to
which holes and particles are defined. The model space
can be built so as to consist of a subset of holes and
particles which may be called active orbitals. For example,

a model space of m active holes and n active particles ¢an
be written as:

bO =3 C (D (29)

The conventional Fock space Bloch equation for the
perturbed hamiltonian can be written for all 4 as,

1(AQUAH P=Q(A) H 4(2) P, (30)

where P is a projector onto the model space. The
universal wave operator £2(4), may be wntten as,

Q)= {exp [T(H]} P (30

* . . {“ Mk ] . i
Corresponding to model space gl the duster operator
has derivatives which can destroy a maximum of m active

CURREINT SCIENCT, YOL. 63, NO. 11, 10 Di CI MBI R 1997

particles and n active holes.
T =TQ )+ AT+ BT+ (32a)

Being universal in nature, each of the terms T ,, may be
written as

T m = Y. > TR, (32b)
k=0 =0
Ton=3 Y TRy (32¢)

The eflective hamiltonian H (%) will also depend on the

external field strength parameter and can be written In
terms Of various order derivatives asg:

Hqay=H@+ AH G+ PHP+ - (33)

The projection of the Bloch equation to the model space
yields

PHAQA) P=Po(A) Hy(2) P
=PH_ ()P

(34)

(The latter identity follows only in case intermediate
normalization is obeyed.) If the manifold of eigenvalues of
{E (A)} satisfy the Schrodinger's equation lor the
perturbed hamiltonian H (1), they are, by extension of the

familiar equations in zero field, eigenvalues of H ;(4)
too.

Z [Hgﬂ'()“)]ji Cip (‘1) = E.ﬂ (’1) Cjﬂ (;":.) ) (35)
where
E,)=EQ+IED+ 2 ED+ oo, 36)

where the set {E} may now defined as the manifeld of

nth order properties. To calculate EY (with a=1 say) one¢

has to solve,

Y {HWL CO+H ), P =EPCR+ ED Y. 37)

One can readily see that for MRCC first-order property,
the structure of an eigenvalue equation no longer holds
good. One can identify the form of (H "), as

P LLABRN] e P (3%)
d4

and so on. The projection of the Podk space Bloch's
cquation to Q space 1. the spuace consisling ol yvirtual
space determinants yields

o [IT(AQA) - QA H ] P =0, (39)
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The zeroth order part of equation (39) provides the
MRCC equation {or the cluster operators necessary for
the calculation of cnergies. Solutions of the denvative
amphtudes in {0.1) scctor needed for the Ist order
property is given by the first derivative of equation (39)
at 4=0, This 1s as follows:

<
&

®,>

A=

S <ot

[ﬁ (2)Q) - QU HE

-

+ ¥ (@AY - Q" H O, ) =0, (40)
}'Ll.l

which can be wntten as

A=0

(O} £[ ﬁ(}.)Q(ﬁ.)—nu)Hg;] ®,> =0

(41)

Equation (4!) yields the parameters which define the
derivative of (J) at A=0. H? and H{j may now be
found as:

(H),=<d,|YQ?0,), (42a)

¢ :
(H )= <¢u. ﬁ[ﬁwﬂw]m ®i> \jeP  (42b)
Equation (37) along with the normalization conditions

seyo gt

Y CLOCW + T AN CP =0,
i i

{43a)

(43b)

yields E{, the first order property. Hence the properties
of a number of states are obtained in a single calculation.
The number of states, however, depends on the number of
configuration included in the model space. Recently
equations for one valence hole/particle system have been
explicitly presented*>.

This is the first response approach in MRCC
framework for quasidegencrate systems. It may be
desirable, as seen from our discussions at the beginning of
this review, to find a varational principle with MRCC
model space. However, formulation of the open shell
variational principle is far more complex and a suitable
one in Fock space for energy calculations has recently
been done. It is pertinent at this juncture to mention the
MRCC developments for energy calculations using
Hilbert space for general model spaces®”. The Hilbert
space formulations may seem to be the more natural on¢s,
although the formal as well as the computational
developments in the Hilbert space approach are lagging.
Future trends in the formulation of open shell CC
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response theortes for properties will be in the direction of
variational formulations in Fock space and/or Hibert
space. This seems to be the natural culmination in the
efforts of developing desirable CC methods for property
calculations. Necdlcss to say these have to be accom-
panied by the necessary code development, particularly

for open shell cases and actual applications using these
theories.

6. Conclusion

In thas review we have discussed the coupled cluster
response methods for calculation of properties. Special
emphasis has been piven on the stationary approach
which has the inbuilt advantage of satisfying the (2n+1)
rule. This facilitates the computational task enormously.
Numerical results from stationary response calculations
are given in Tables 1 and 2.
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An algorithm for conducting hypotheses
testing based on Neyman—-Pearson
Lemma. I. The case of continuous
univariates

S. Parthasarathy and K. Sekar

Department of Crystallography and Biophysics, University of Madras,

Madras 600 025, India

Neyman-Pearson Lemma provides a method for con-
structing the best critical region in hypotheses testing
problems involving two simple hypotheses I, and H,. In

many applications M, and H, sare expressed as
probability density functions fy(x) and £, (x). In practical
situations the functions f;(x) and 7, (x) are cither too
complicated to be amenable for straightforward theoretical
treatment by Neyman-Tearson Lemma or given only as a
table of numerical values. An algorithm to conduct the
Neyman—Pearson test for such a complicated sitvation is
propused. A Fortran program, called NPTEST, for imple-
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menting the algorithm has also been developed and
tested.

IN many hypotheses testing problems one has to decide
between two probability density functions (PDF) f,(x)
and f,(x) and the Neyman-Pearson Lemma® can be
used to construct the best critical region for the test. In
many practical situations the PDF f,(x) defining the
null hypothesis H, and the PDF f,{x) defining the
alternative hypothesis H, are ¢ither too complicated to
be amenable for straightforward theoretical treatment
by Neyman-Pearson Lemma or are given oanly as a
table of numerical values, For example, in statistical
tests for determining the space group symmetry of a
crystal one meets with such a situation. It would
therefare be quite uscful to develop an algenthm for
conducting the Neyman-Pearson test for such compli-

cated situations and in this paper we shall descnibe one

such algorithm, A Fortran program, called NPTEST,

for implementing the algorithm has abvo been developed

and tested using random samples generated from a few
known piobability distributions. NPTEST has also
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