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Evolutionary biology indicates that vision is a key sense
for obtaining information about our physical environ-
ment. Since Artificial Intelligence is rapidly moving to
include the function of automata that are physically
situated in the world —robots—the importance of a
computational onderstanding of vision becomes even
mote central. However, visually-mediated antomata have
been less than totally successful. In this article we review
selected research in computational vision, and highlight
certain of the difficulties experienced in classical
approaches. Certain new approaches to vision are then
described, which open intriguing biological and mathe-
matical connections,
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Introduction

One of the most stnnking messages from ¢volutionary
biology is that vision is a key sense for obtaining
information about the physical environment. As new
species evolved, increasingly larger fractions of the
available neural architecture have become specialized
for wvision. In contrast, as research 1n Artifical
Intelligence evolved, vision has become more encap-
sulated and removed from the central focus. Many
began to view it as a peripheral activity, appropriate for
applications, but employing techniques different from
the rest of Al. This differetice was exacerbated, because
vision seems so effortless and immediate to us, while
cognitive and lingustic activities often seem so diflicult
and consciously demanding. Now the situation is
changing, however. It i1s becoming clear that the
encapsulation was actually around classical Al, which
had cut itself off from the physical world. Al is now
moving rapidly to change this, by considering the
function of situated automata: robots. Hence the
importance of a computational understanding of vision
is becoming much more central. In this article we
review aspects of computational vision, with an aim
being to diagnose several of its strengths and s
weaknesses, and to indicate a few current research
trends. We focus primarily on early vision, with a bias
toward biological influences. Other revicws, which focus
on the different stages through which computational
vision has evolved can be found in ref. 1.
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Early vision and high-level vision

Images are created by the projection of photometric
propertics of objects in the world onto an array of
sensors. The task of vision can be summarized as
inverting this; 1.¢e. as that of inferring the three-
dimensional structure of the physical environment from
the two-dimensional intensity structure in images. This
is clearly an immensely complex task, whose apparently
effortless solution in primates involves more than half
of our brains?! Thus the presupposition that vision is
easy and immediate must be supplanted by a more
measured evaluation®. One way to manage complexity
is decomposition, and the most prominent one in vision
separates early processing, or the extraction of object
outlines, from high-level processing, or the recognition
of objects. For the next few sections in this article we
shall focus on these two components, but will indicate
others toward the end.

Edge detection in early vision

Imagine a dark cube against a white background. The
task of early vision is to abstract a description of this
cube sufficiently rich to enable its recognition, while
segmenting 1t (as a figure) from the background. Such a
description must certainly involve the bounding
contour around this cube, and i1t is the task of
boundary detection to recover this contour. Complexity
1ssues arise immediately, however, because the cube
may subtend a large visual angle covering an enormous
number of pixels. If processing could be done locally
and 1n parallel, then these pixels could be rapidly
processed. The potential of parallelism is strengthed,
moreover, because the image contains a distinguishing
signature in the neighborhood of a boundary of the
cube: a dark image region separated from a light image
region by a line. Thus the classical approack to
boundary detection is parallel, local edge detection
followed by a grouping process to join the edge
clements together. Dillerentiation, which accentuates

such dark/light adjacent ddferences, provides the
mathematical basis for c¢dge detection, and at 13
implemented in parallel over docal image windows,
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Varous image filtering technigues have been used to
design local operators, e.g. ref, 4.

This parallchism 1s prevalent in neurobiology as well,
which has provided important conceptual support for
computer vision. In particular, patterns of light
nrojected onto the retina influence the activity of cells
in the visual system, either in an excitatory manner,
leading to an increase in that cell’s firtng rate, or an
inhibitory one, leading to a decrease (possibly below a
‘resting’ or spontaneous level). The resultant map of
activity as a function of light distnibution is called a
receptive field, and in visual cortex several varieties are
found3. Simple cells (see Figure 1) are those cells whose
receptive fields most resemble line and edge detectors in
computer vision; they are orientationally selective, as
well as selective for a number of other properties
including stimulus contrast, direction of motion, and
stereo disparnity. Complex cells resemble simple cells, but
their receptive fields lack the distinctive sub-field
structure, and are typically larger. Finally, endstopped,
or hypercomplex cells, appear in both simple and
complex varieties, and have additional endzones which
inhibit their response when lines or edges extend into
them. All types appear at a range of different sizes, or
are optimally selective to different spatial frequerncies,
or to bars of different widths.

Yiewed in the large, the architecture of visual cortex
appears ideally suited as a boundary detection machine.
In computer wvision, local edge detection is typically
accomplished in two steps: (i) the convolution of an
operator against the image +and (it) some process for
interpretation of the operator’s responses. Or stated in
more general terms, the sstéeps consist of (i) a
measurement process followed by (ii) a detection
process which Jocates those positions at which the first
derivative (spatial gradient) is high; or where the second
derivative crosses zero. As with edge operators, simple
cells have been modeled as linear operators followed by

Figure 1. A model of a simple cell receplive field of the sort that
could be found in primate visual cortex. Note the elongated central
‘excitatory’ region, surrounded by inhibitory side-bands. Viewed as an
operator for computer vision, Such structures are known as ‘line
detectors’,
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a squaring non-hnearity, and endstopped cells are
thought to signal boundary endings. Furthermore, this
neural wetware is arranged into orientation hyper-
columns, 50 that each edge onentation can be checked
for dt each position.

The commitment to a local approach to edge
detection has been powerful, given this confluence of
ideas from computation and biology. Indeed, edge
detectors would work perfectly at the sides of the ideal
cube discussed above; however, when the responses to
realistic images are examined, the quality of the results
is disappointing; (see Figure 2). Such a poor front-end
response has been one of the most frustrating aspects of
trying to build computer vision systems, and has greatly
limited their utility.

To deal with this frustration, researchers have turned
to both mathematics and to neurobiology, Canny®, for
example, developed an edge operator based on
optimality principles, while Marr and Hildreth? were
motivated by the neurobiological observation that
receptive fields span a range of sizes. They postulated a
coincidence principle for responses across size®.
However, neither of these approaches identified the real
problems. Computationally, although the edge of the
cube above can be modeled as a step change in
intensity plus additive noise, realistic edge profiles do
not match this®. Nevertheless, Canny’s mathematics still
follows this assumption. Neurobiologically, receptive
fields modeled as derivates of Gaussians must smooth
around corners. They thus destroy a feature essential
for identifying the cube, and for separating objects
standing 1n occlusion relationships to one another
(observe that the point of intersection of bounding
contours from separate objects must exhibit a ‘corner’,
or a singularity in orientation). This i1s a fundamental
shortcoming of the Marr-Hildreth approach, and of
regularization-based approaches as well*®, Further-
more, the biology is much more complicated. For
example, there are different percentages of endstopping,
ranging from fully endstopped cells to those exhibiting
no endstopping at all. Cunously, most cells are
endstopped to an intermediate extent; what function
could this partial endstopping subserve? It seems
unbkely that partial end-of-line detectors exist. Finally,
there 1s an aspect of boundary inference that exceeds
the physical stimulus, and is completely abstract!?! (see
Figure 3).

To summarize, we can identify the following
problems with the classical approach to edge detection:

® Assumption of linearity. Edge operators are rest-
ricted to a local measurement; this local measure-
ment 1s taken to be linear for either ease of
implementation, analysis, or because the biology
appears to perform that way. However, such local
linear measurements ‘blur’ nearby structure to-
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Figure 2. Nlustration of classical edge detection. The upper left figure shows maximal responses from a Sobel edge detector®® to an
image of automobile engine components. Observe how the outline is broken where it should indicate a solid, bounding contour, but
connected between physically different objects. The upper right figure is the response of the Canny operator to an image of a
fingerprint. Note how the dense swirls are randomly merged together, The lower figures illustrate the Marr-Hildreth operator
evaluated over the auto parts image at two scales. Their response combines the shortcomings of both the Sobel and the Canny

operators.

gether. This blurring not only merges distinct
objects, but smooths around corners as well. Such
corners are key to segmentation.

Assumption of a single value at each position. The
interpretation of local operators as signaling the
edges of objects is heuristic; mathematically, local
edge detectors would be interpreted as signaling
the tapngent to the boundary curve. As such, the
tangent is well defined, and has a single value,
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precisely at those positions for which the curve is
regular, or smooth. The tangent is undefined at
corners! Thus any operation designed to return a
single edge (tangent) orientation at a position must
fall at singular ones.

The local 10 global transition

Local edge detector responses must somehow be glued
together nto global contours. In his early system,
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Figure 8. The Kanisza subjective edge illustrates that boundary

detection is an inferential process that builds upon the information 1n
the mmage. rather than being hmited to it.

Roberts'? fit long straight lines to edge detector
outputs, because he was working in a blocks world of
objects such as cubes, and more modern investigators
are still fitting lines!?. However, the general problem of
grouping is much more subtle. The Gestalt psychologists
(e.g. ref. 14) postulated a series of grouping principles,
such as the principle of good continuation for curves,
which suggests why we perceive a figure ‘8’ as a single,
non-simple curve that crosses itself, rather than two
‘circles’, one on top of the other. The Kanisa subjective
edge further illustrates the constructive aspect of the
process.

One view of grouping is that it is a noise problem.
Since there are bogus responses from the local
detectors, a global estimation procedure is necessary to
eliminate them'*'®, Another is that it is simply an
image-domain phenomenon, linked to scale!”. Since
larger operators have more image support, they should
be less susceptible to local variations. However, they
are also more likely to average across images of
different objects. Thus, we question both of these
assumptions.

® Assumption that grouping is a noise reduction
operation. The refinement and grouptng of local
operator responses is a geometric problem, not
solely a noise estimation problem. Therefore,
geometric techniques must be used in refining
them. Grouping problems cannot be solved by
simply looking across scale in the image (cf. Figure
2, bottom).

® Assumption that scale is an image-domain pheno-
menon. The scale of events in the world is an
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object-domain issue; the amount of smoothing for
notse ehmifation is an image-domain operation.

We will show how this latter notion of scale arises in
the shape portion of the paper, and how image-domain
delicacies are best handled by the introduction of
certain non-linearities.

A recent approach to boundary detection

We begin with the observation that a wide gulf exists
between the initial, broadly-tuned measurements of
edge operators and global curves, and we propose an
intermediate structure—the discrete tangent field —to
fill this gulf. The result is a computational solution to
curve detection using it, which is biologically plausible.
The solution suggests that there are two different styles
of computation involved: in the first stage, hypotheses
are represented explicitly and coarsely in a fixed,
preconfigured architecture, while in the second hypo-
theses they are represented implicitly and more finely in a
dynamically-constructed architecture. As we proceed, it
should become clear how these different representations
mediate the complexity issues raised in the Introduction.

The representation chosen for the first stage is
intimately connected to the biological notion of hyper-
columns, and provides an alternative solution to the
corner detection problem. The standard approach is to
design specialized ‘corner detectors’, but then an agent
must be postulated to decide whether a corner or a
point of high curvature is present. Another approach is
to assume that large values of a variational parameter
(¢.g. bending energy) signal discontinuities, except this
approach assumes (1) there is no difference between high
curvatures and discontinuities; and (ii) orientation can
be measured accurately enough to locate large values in
its derivative. This second point indicates the chicken-
and-egg nature of the problem: since it is necessary to
know where the discontinuities are before orientation
can be estimated accurately, how can estimates of
orientation be used to locate discontinuities! We have
been exploring an alternate approach to discontinuities,
in which they are represented by multiple values of
orientation at a given point'®, Along a curve, for
example, this amounts to taking the limit in both
directions into the discontinuity. The connection to
hypercolumns 1s now clear: they provide the substrate
for representing multiple values of orientation at a
single point. Mathematically such techniques are
related to the Zariski tangent space in algebraic
geometry'®,

The first stage of our model incorporates endstopped
neurons, but, as we show below, they are used to infer
curvatures, not hne endings. This explains the inter-
mediate values of endstopping that have been observed
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by physiologists, and also suggests novel numerical
techmiques for measuring curvature. We also make use
of an itcrative network to enforce differential geometric
constraints, what we call curvature consistency, via co-
circularity??. The co-circularity relationships mediate
interactions between orientation hypercolumns. The
final result is a reliable but coarse description of local
differential properties of curves (i.e. their discrete trace,
tangent, and curvatures).

The second stage of the algorithm synthesizes the
global curves through the tangent field. The idea behind
our approach is to recover the global curve by
computing a covering of it; i.e. a set of objects whose
union is equivalent to the original curve, rather than
attempting to compute the global curve directly. The
elements of the covering are unit-length dynamic
splines, and global curves are recovered to sub-pixel
accuracy. The recovery of this covering is mediated
through the construction of a potentia) distribution,
and 1t is in the construction of this potential that the
local-to-global transition is effected. An overview of the
two stages of curve detection Is provided next,
beginning with two preliminary notions of non-
linearities in local operators and coarse but stable
measurements of curvature. See also Figure 4.

Logicalflinear operators. The examples of edge detec-
tion shown above indicate that nearby image structure
can interact to obscure the proper outline. This
Inappropriate interaction is mediated by the linear
summation within the operator’s support. For curve
detection, we have developed a set of non-linearities
that significantly improve the sensitivity of initial
operators over (optimal) linear ones?!. These non-
hinearities implement a test on continuity of support
along the preferred direction of the opcrator, and a test
on variation across it; see Figure 5. The non-linearities
are formulated within a logic that accumulates
positively consistent evidence linearly, but in which
incompatible evidence enters nonlinearly, Thus the
operators appear linear for one class of stimuli but
markedly nonlinear for others—we call these logical-
linear operators. They exhibit dual advantages: they are
considerably more stimulus-specilic than purely linear
operators, while more robust to incidental stimulus
variation than logical operators. Their improved per-
formance as edge detectors is illustrated in Figure 6. As
models of visual cortical neurons (e.g. simple cells) they
are consistent with the well-known ‘linear® properties
(eg. sensitivity to spatial frequency gratings) while
exhibiting the nonlinear behaviour associated with high
vernier sensitivities, strong suppressive eflects  for
opposite contrast segments, and for cross-oricntation
inhibition.

Indstopping and curvature estimation. Curvature can
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Figure 4, An ilustration of the different stages of curve detection. a,
A small ingerprint image. The first stage is broken into two steps. In
the first step, initial measurements are performed to estimate the local
curvature and orientation. 5 In ihe second step these inilial
measurements are refined by a relaxation labeling process and
¢, shows the final tangent field (2 iteratons). There are also two steps
in the second stage, first ¢, the construction of a potential distribution
from the entrics i the tangent fictd, and second, d, the covering of the
global curve by a family of short curves, or snakes.

be thought of as a deviation from straightness. In ref. 22
we develop a computational model for endstopping,
and show how it amounts to a ‘non-lincar difference’
between simple cell responses. We now illustrite how
this can provide the basis for curvature measurements.
The modcl is based on the obscrvation that there are
simple cells whose receptive ficld size differs as a
function of cortical layer. In particular, Layer VI of cat
primary visual cortex contains cclls with receptive ficlds
notably longer than those in the laminac above it®,
Now, given the response of a short simple ¢ell, and the
response of a long simple ccll, with receptive ficlds
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Figure 5. The subunit structure of logical linear operators. The subunits in the normal direction evaluate contrast differences,
enforcing the requirement that a bright line, for example, must have a positive contrast relative to the flank on either side. Continuity
of contrast is enforced in the tangential direction. If all of the above tests are passed, then the operator appears to have a linear

structure; hence we refer to this structure as hidden non-hnearities.

Figure 6. The response of the logical,linear operalor fo the
fingerprint mmage. MNote how the curves are more appropnately
represented, and compare it with the Canny response tn Figure 2,

sharing orientation preference and centered at the same
retinal location, then their ‘difference® models the
endstop property (the response stops for stimuli

412

exceeding some length). But more importantly, the
response Of Such an operator varies systematically with
curvature. Biologically, the model has provided quan-
titative predictions (now verified) about the response of
endstopped simple neurons to curved stimuli.

Stage 1. Inferring the tangent field

With this background, we can now sketch the first stage
of our system for curve detection. The goal is to infer
the trace of the curve, or the set of points (in the image)
through which the curve passes, its (approximate)
tangent and curvature at those points, and their
discontinuities?®. This is the tangent field, and note that,
since the 1nitial measurements are discrete, this will
impos¢ constraints on the (inferred) tangents, cutva-
tures, and discontinuities?®,

This first stage of orientation selection is in turn
modeled as a two-step process:

® Step 1. Initial measurement of the local fit at each
point to estimate orientation and curvature. These

CURRENT SCIENCE, VOL. 64, NO. 6. 25 MARCH 1993
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estimates derive from a model of simple cell
receptive fields instantiated at multiple scales and
orientations at each image position. Non-linear
differences between orientation estimated over
different extents prcvide the curvature estimate,
We thus propose that endstopped neurons in the
visual cortex represent joint hypotheses about
orientation and curvature, and that their firing rate
along an {endstopped) orientation hypercolumn
represents how well these hypotheses match the
local image structure. This is our representation for
the first stage and, in our system at each of cight
orientations a small number of simple cell
instances are combined to define five discrete
curvature classes—two on either side of the zero
curvature class. The four curved classes are
obtained from endstopped instances and the zero
curvature estimate from a nonendstopped simple
instance. Typical results above noise are shown in
Figure 4b; although they convey a rough idea of
what the curve structure is, there are both
responses where there is no curve, and ambiguous
(multi-valued) responses where there is a single
curve. We contend that no local operator can solve
these problems in general, and further that a
spatially-interactive process can, Thus we require

© Step 2. [Interpretation into an explicit distributed
representation of tangent and curvature by
establishing consistency between the local measure-
ments. Consider an arc of a curve, and observe
that tangents to this arc must conforin to certain
position and orientation constraints for a given
amount of curvature: we refer to such constraints
geometrically as co-circularity (Figure 7). Discretiz-
ing all continuous curves in the world that project
into the columnar space of coarse {(orientation,
curvature) hypotheses partitions these curves into
equivalence classes®®, Interpreting the (orientation,
curvature) hypotheses as endstopped neurons, such
co-circularly-consistent relaitionships .are expected
between endstopped neurons in nearby orientation
hypercolumns given such a curve as stimulus.

Such inter-columnar interactions can be viewed
physiologically as excitatory and inhibttory projections
between endstopped celis at nearby positions (adjacent
hypercolumns), and can be used as follows. Since
curvature is a relationship between tangents at ncarby
positions, two tangents should support on¢ another af
and only if they-agree under a curvature hypothesis,
and co-circularity provides the measure of such
support. In addition, two tangents that disagrec with
the curvature estimate should detract support from one
another. Relaxation labeling provides a formal mecha-
nism for defining such support, and for specifying how

CURRENT SCITNCE, VOL. 64, NO. 6, 25 MARCH 199}

to use it*>, Mathematically it amounts to gradient
descent; computationally 1t is a generalization of
Hopfield-like neural networks?®, and physiologically it
can be viewed as the computation implemented by
pyramidal neurons as they combine information from
adjacent (endstopped) orientation hypercolumns. Since
only 2-3 iterations are required for convergence
(empirically), 1t 1s natural to propose that these are
accomplished by the forward- and back-projecting
pyramidal neurons within visual area V1 and connecting
areas V1 and V218,

Stage 2: Inferring a covering of the curve

Since the tangent is the first derivative of a curve (with
respect to arc length), the global curve can be recovered
as an integral through the tangent field. Such a view
typically leads to sequential recovery algorithms, as in
Newton’s method in numerical analysis. But these
algorithms require global parameters, starting points,
and some amount of topological structure (i.e. which
tangent point follows which), in shcrt, they are
biologically implausible. In contrast, we propose an
approach in which a collection of short, dynamically
modifiable curves move in parallel ("snakes’ in computer
vision); see ref. 27.

Recovering the global curve by computing a covering
of it; i.e. a set of objects whose union is equivalent to
the original curve, avoids the prerequisite global
problems. Let the elements of the covering be unit-
length dynamic splines, initially equivalent to the
elements of the tangent field, but which then evolve
according to a potential distribution constructed from
the tangent field. The evolution takes two forms: (i} a
migration in position to achieve smooth coverings; and
(ii) a ‘growth’ to triple their Initial length.

Again, there are two conceptually distinct steps to
Stage 2 of the algonthm:

©® Step 1. Constructing the potential distribution
from the discrete tangent field. Each entry in the
tangent field actually represents a discretization of
the many possible curves in the world that could
project onto that particular (tangent, curvature)
hypothesis. Now these pieces must be put together.,
Assuming the curves are continuous but not
necessarily differentiable everywhere, each contri-
bution to the potential can be modeled as a
Gausstan (the Wiener measure) oricated in the
direction of the tangent held entry. The full
potential distribution is their pointwise sum; see
Figure 4.

@ Step 2. Spline dynamics, The discrete entities in
the tangent ficld are comerted into unit splines

413
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Figore 7. 8, The geometnic relationships necessary for defining the compatibilities between two label pairs at nearby points
i=(x,.yJ) and j=(x,,y). b, Compatibilities between coarse {orientation, curvature) hypotheses at nearby posiions. Eight distinct
orientattons and seven curvatures were represented, and three examples are shown. (top) The labels which give positive (white) and
negative (black) support for a diagonal orientation with no curvature; {mddle) positive and negative support for a small curvature
class; (bottom) postive and negative support for the maximum curvature class. The magmtude of the interactions varies as well,
roughly as a Gaussian superimposed on these diagrams. Physiologically these projecuve fields could represent inter-columnar

interactions mplemiented by pyramidal neurons.

imtialized in the valleys of the potential distn-
bution. They evolve according to a variationa)
scheme that depends on sphine properties (tension
and rigidity) as well as the global potential (Figure
8).

The potential distribution is created by adding
together contributions from each element in the tangent
field. Changing the representation from the tangent field
to the potential distribution changes what 1s explicit
and what is implicit in the representation, and local
information is combined into global information. In
Stage 1 there were discrete coarse entities; now there
are smooth valleys that surround each of the global
curves, with a separation between them. The ‘jagges’
imposed by the initial image sampling have been
ehiminated, and interpolation to sub-pixel resolution s
viable.

To recover the curves through the valleys, imagine

414

creating, at €ach tangent field entry, a small spline of
unit length oriented according to the tangent and
curvature estimates (Figure 4}. Since each spline is born
in a valley of the tangent ficld potential distribution,
they are then permitted to migrate to both smooth out
the curve and to find the true local minima. The union
of these local splines is the global cover. But the splines
must overlap, so that each point on every curve 1s
covered by at least one spline. We therefore let the
splines extend in length while they migrate in position,
until they reach a prescribed length. The covering is
thus composed of these extensible splines which have
grown in the valleys of the tangent field potential. Their
specific dynamics and properties are described more
fully in refs. 18 and 28.

Shape description

Given the descriptions of global curves, we next switch

CURRENT SCIENCE, VOL. 64, NO. 6, 2§ MARCH 1993
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Figure 3'. [Hustration nfi the splines in motion. Initially, each spline js born at a tangent field location, with unit length. Then they
migrate i position to minimal valleys in the potential distribution, and in length, so that they overlap and fill in short gaps. The

[ength of each spline triples by convergence.

to the problem of shape description. While there is a
sense in which the meaning of shape is effortlessly and
intuitively understood, a formal definition of it has been
elusive: there 1s currently no gencrally accepted
definition of shape in either computational vision or
psychology; but see refs. 29-31, This gap in our
understanding i1s important, because shape may be
considered as the bottleneck between early visual
processes operating on edges, texture, color, shading,
etc, and higher level processes acting on.representa-
tions of objects. We therefore seek a theory of shape
sufficiently powerful to provide a language for describ-
ing shapes. It follows that such a theory must be robust
to variations within scenes, e.g, those varnations due to
small changes in viewpoint, to the changing appearance
of objects due to local motion and emergent occlusions,
as well as to variations within objects, e.g. due to

CURRENT SCIENCE, YOL. 64, NO. 6, 25 MARCH 1993

flexibility, growth, and inflation.

To meet these needs, our approach to shape is
organized around two basic intuitions: first, if a
boundary were changed only slightly, then, in general,
its shape would change only slightly. This leads us to
propose an operational theory of shape based on
incremental contour deformations. It differs from other
approaches to shape based on dynamics (e.g. ref. 32).
The second intuition 1s that not all contours are shapes,
but rather only those that can enclose ‘physical’
material.

In a formal theory of contour deformation derived
from these principles, we are able to prove that
arbitrary local deformations of a curve 1n an arbitrary
direction are quabtatively captured by a linear com-
bination of two basis deformations along the normal:
(1) a constant deformation and (it} a deformation that
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vanes with the curvature??, This is a reaction/dilTusion
evolution equation which 15 dc¢fined only for smooth
curves, since the normal is explicitly required. As there
1S no tangent at a corner, there is no normal, either.
However, we have been able to abstract the above
mathematical framework considerably, by showing that
the deformations are equivalent to a hyperbolic
conservation law with viscosity?®, This is significant
because such nonlinear conservation laws lead to the
formation of shocks and to a notion of entropy. We are
now f{inally able to close the loop back to shape, by
showing how different classes of shocks in the solution
to this conseivation law correspond to the computa-
tional elements of shape. In particular,

1. First-order shocks correspond to protrusions;

2. Second-order shocks correspond to parts;

3. Third-order shocks correspond to bends;

4. Fourth-order shocks correspond to seed points for
placing the matenal of shapes.

We close with two examples. First, we illustrate the
notion of delormation and how it leads to robust
descriptions of parts. Figure 9 contains four images of
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Figure 9. An illustration of how our deformation approach to shape
leads to natural descriptions despite large quantities of noise and
texture. These four pears were proposed by Hoffman and Richards as
gross modificatsons of a single object category (pear). The onginal
shapes are across the top, in black. Each column contains samples
[rom a comtinuous sequence in which the bounding contour has
evolved according to our deformation rules. The samples were chosen
to ilustrate how the deformation process eliminales the noise (first
row) to reveal the fundamental part structure for the pear (second
row). This structure is a pair of lobes, with the most stgrificant one on
the bottom, The part structure is signaled by the shocks
(discontinuities) that develop on the contour m opposing pairs. Note
how the lobe structure, and the dominant lobe (bottom row) are
comparable for each of these different pear images, even though the
notse and texture were so prominent, The descniption for each of
these pears in our framework 1s a vanant of ‘a large bottom, a small
middle and a very small top.”
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pears, presented by Richards et al”°, and which were

intended as gross modtfications of an object category
(pear). The original shapes are across the top, and each
column contains samples from a continuous sequence
in which the bounding contour has evolved according
to our deformation rules. The continuous space of
shapes which supports such descriptions is called the
Entropy Scale-Space®®. 1t satisfies the need for object
domain scale spaces referred to earlier.

A second exampile, Figure 10, tllustrates the notion of
hierarchy in more detail. An image of a doll was chosen
to show how the different ‘parts’ emerge according to
our natural intuitions about significance. Note how
hands and feet are less significant than limbs, which are
in turn less significant than the torso. This example also
illustrates that several different types of shocks arise
within our system, with first-order shocks signaling
deformations, second-order shocks signaling part
connections, third-order shocks signaling bends, and
fourth order shocks signaling part centers. Note that
occlusion will not affect decomposition into parts, a
desirable feature for recognition.

Different organizational decompositions

To conclude this article, we observe that the processing
described thus far f{focuses entirely on bounding
contours. We began with edge detection, then grouped
the local edge elements into global contours, and finally
examined how shape analysis can proceed from
deformations of these contours. The deformation
analysis was particularly interesting from an Al
perspective, because the different discrete components
of shape were derived from continuous mathematics,
not from the more symbolic perspective of models.

However, intra-surface events project into images as
well, and vision is used for more than object
recognition. Thus we close with a discussion of two
alternative pathways for vision, which decompose the
problem in different manners than those commonly
addressed.

Color, contrast, and texture

In 1978 Margaret Wong-Riley stained sections of
squirrel monkey striate cortex for the activity of the
mitochondrial enzyme, cytochrome oxidase, and noticed
a periodic distribution of ‘puffs’ of increased enzyme
activity n layers 2 and 3. This discovery revealed an
entire sub-organization within the visual cortex that
supports information processing of a completely
different variety than the border system already
discussed*®. When the cortex is viewed {rom above, the
‘pufls’ form a periodic array intercalated within a lattice
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Figure 10. s, The evolution of shocks leads to parts, protrusions, and bends. This figure shows the development of an image of a
doll (National Research Council of Canada Laser Range Image Library CNRC9077 Cat No 422; 128 x 128). The contour shown in
box N correspends to increasing boundary evolution (time) steps. Observe that the ‘feet’ partition from the ‘legs’ (via second-order
shocks) between frames 3 and 4, and the ‘hands’ from the ‘arms’ between frames 2 and 3. Following these second-order shocks, first-
order shocks develop as the *arms’ and are *absorbed’ into the chest. Running this process in the other direction would illustrate how
the arms ‘protrude’ from the chest. &, The hierarchical decomposition of a doll into parts. Selected [rames were organized into a
hierarchy according to the principle that the significance of a part is directly proportional to its survival duration.

of lower cytochrome oxidase activity. Allman and
Zucker3? proposed that the distinction between the
‘puffs’ and the lattice is related to two different modes
for representing stimulus variables.

We submit that scalar vanables related to intensity of
the stimulus are represented in the ‘pufls’. The scalar
vanables include color, contrast, and texture density.
Such intensity information is encoded explicitly over a
very broad dynamic range, in which firtng rate 1s
proportional to the intensity variable (for example,
contrast). Such an encoding strategy requires that
neurons have the energetic capacity to sustain a broad
range of activity levels, which in turn is related to the
high concentration of cytochrome oxidase.

In contrast, the surrounding lattice of lower cyto-
chrome oxidase activity supports geometrical variables
with cells that are orientation selective. This 1s the
system of simple, complex, and endstopped celis already
discussed. In particular, we showed how ¢ach orienta-
tion is possible at any position, and each is represented
cxplicitly within an orientation hypercolumn. Firing
rate for these neurons now varies largely with how well
each individual orientation maiches image structure at
that location. But there is rarely more than one oricnta-
tion at any retinotopic location, so on average most
oriented cells in each hypercolumin are quict. The
average level of neural activity over time is thus much
less in the lattice than in the pufls, which s conststent
with the lower levels of cytochrome oxidase in the

lattice.
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Object recognition vs. navigation

This final decomposition is perhaps even more far
reaching, since it involves not intercalated substruc-
tures within the same area, but rather different regions
of the brain. Conceptually, there i1s a fundamental
theoretical difference in sensing for recognition as
compared to sensing for navigation. Recognition
problems have been at the center of activities in
computational vision, and have been the main subject
of this review. Central to recogmition has been the
bounding surface around an object, because it i1s this
surface that provides the foundation for charactenzing
shape. The paradigm of active vision evolved specifically
so that descriptive uncertainties could be ehminated to
the point that objects could be reliaby identified. To
summarize this activity, the types of questions asked
could range from (most coarsely} 1s there a small object
in the room’ to ‘is there a cup in the room’ to (most
specifically) ‘is my favorite cup 1in the room’. Object
recogniion in primates likely involves the temporal
lobe of the brain.

Vision for navigation poses rather different questions,
Most coarsely, one could ask: ‘can [ approach
coordinate area B, more specifically, *can 1 return to
where I was 5 minutes ago’, and most spectficadly, "can |
pet from A to B Answering these questions ruises
dramatically different requircments for yision (and
scnsing) systems, a s¢t of requirements that we subnt
are complementary 1o those for uobject recognition.
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Instead of the focus on bounding surfaces, the focus
now is on free-space. That is, instead of working from
without the object, and attempting to describe the
surface bounding it, now we are working from within
free-space, and attempting to characterize the horizon.
Notions ol ‘part’, so central to shape, get replaced by
topological requirements of ‘reachability’. Descriptive
uncertainty is now to be expected, since moving ‘north’
may not require elaborating a description of what 1s
‘west’ of current position. The global requirements that
motived active visual paradigms are replaced by the
local requirements of getting from here to there without
falling into a hole. Vision for navigation likely involves
the panetal cortex i primates.

Conclusions

While vision is a basic source of informational feedback
from the world, systems that use it have been less than
universally successful. We argued that a significant
reason for this has been the poor quality of early vision,
in particular, the difficulty of dealing with ncorrect
boundary information. This has made a complex vision
problem nearly impossible, except in constrained
circumstances. But recent efforts are producing much
more veridical results, and a perspective from modern
peurobiology and diflerential geometry is helping
substantially. While much remains to be done, the
foundations are certainly being out into place.
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