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What is creativity? One new idea may be creative, while
another is merely new: what’s the difference? And how is
creativity possible? Artists and scientists rarely know how
their original ideas come about. They mention intuition,
but cannot say how it works. What’s more, many people
assume that there will mever be a scientific theory of
creativity—for how could science possibly explain
fundamental novelties? The very notion seems to be a
contradiction in terms. But computational ideas are
kelping us to understand how buman originality is
possible. We can now say somethirg specific about how
intwition works and how the buman mind can seem to
surpass itself.

The problem

Creativity is a puzzle, a paradox, some say a mystery.
Artists and scientists rarely know how their original
ideas come about. They mention intuition, but cannot
say how it works. Most psychologists cannot tell us
much about, it, either. What’s more, many people

assume that there will never be a scientific theory of

creativity —for how could science possibly explain
fundamental novelties?

As for computers, these are commonly believed to lie
right at the opposite end of the philosophical spectrum.
Surely, they can have nothing whatever to do with
creativity? This opinion was first expressed over a
hundred years ago, by Ada, Lady Lovelace (the friend
and collaborator of Charles Babbage).

Lady Lovelace realized that Babbage’s ‘Analytical
Engine’—in essence, a design for a digital computer —
could, in principle, ‘compose elaborate and scientific
pieces of music of any degree of complexity or extent’
(quoted in ref. 1, see also ref. 2). But she insisted that
the creativity involved in any efaborate pieces of music
emanating from the Analytical Engine would have to be
credited not to the engine, but to the engineer. As she
put it: ‘The Analytical Engine has no pretensions
whatever to originate anything. It can do [only]
whatever we know how to order it to perform’.

If Lady Lovelace’s remark means merely that a
computer can do only what its program enables it to do, it
is correct—and, from the point of view of theoretical

———

*Text based on a Friday Discourse delivered at the Royal [nstitution
of Great Britain,
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psychology, important. It means, for instance, that if a
program manages to play a Chopin waltz expressively,
of to improvise modern jazz, then the musical
structures and procedures in that program must be
capable of producing those examples of musical
expression or improvisation. It does not follow that
human musictans do it 1n the same way: perhaps ther¢
is reason to suspect that they do not. But the program
specifies, in detail, one way in which such things can be
done. Alternative thecries, involving different musical
structures or psychological processes, should ideally be
expressed at a comparable level of detail.

But if Lady Lovelace’s remark is intended as an
argument denying any interesting link between compu-
ters and creativity, it is too quick and too simple. We
must distinguish four different questions, which are
often confused with each other. 1 call them Lovelace-
questions, because many people would respond to them
(with a dismissive ‘No!’) by using the argument cited
above.

The first Lovelace-question 1s whether computational
concepts can help us understand how human creativity
is possible. The second is whether computers (now or in
the future) could ever do things which at least appear to
be creative. The third is whether a computer could ever
appear to recognize creativity—in poems written by
human poéts, for instance, or in its own novel ideas
about science or mathematics. And the fourth 1s
whether computers themselves could ever really be
creative (as opposed to merely producing apparently
creative performance whose originality 15 wholly due to
the human programmer).

The psychologist’s interest is mainly in the first
Lovelace-question, which focusses on creativity in
people. The next two Lovelace-questions are psycho-
logically interesting msofar as they throw light on the
first.

The answers [ shall propose to these three questions
are, respectively: Yes, definitely; Yes, up to a point; and
Yes, necessarily (for any program which appears to be
creative ). In short, computational ideas can help us to
understand how human creativity is possible. This docs
not mcan that creativity 15 predictable, nor ¢ven that an
original idea can be explained in every detatl after 1t has
appearcd. But we can driw on computational ideas in
understanding in scientific terms how “intuition’ works.

For psychological purposes, the fourth Lovelace-
question is less important than the other three. Itis not
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a scientific question, as they are, but—as we shall
see — a disguised request for a moral-political deciston.

Defining creativity

Why does creativity seem so mysterious? To be sure,
artists and scientists typically have their creative 1deas
unexpectedly, with little if any conscious awareness of
how they arose. But the same applies to much of our
vision, language, and common-sense reasoning. Psycho-
logy, including computational psychology (which uses
theoretical concepts drawn from artificial intelligence,
or AI), includes many theories about unconscious
processes. Creativity is mysterious for another reason:
the very concept is seemingly paradoxical.

If we take seriously the dictionary-definition of
creation, ‘to bring into being or form out of nothing,
creativity seems to be not only beyond any scientific
understanding, but even impossible. It is hardly
surprising, then, that some people have ‘explained’ it in
terms of divine inspiration, and many others in terms of
some romantic intuition, or nsight. From the psycho-
logist’s point of view, however, “intuition’ i1s the name
not of an answer, but of a question. How does
intuition work?

People of a scientific cast of mind generally try to
define creativity in terms of ‘novel combinations of old
ideas’, where the surpris¢ caused by a ‘creative’ 1dea 1s
due to the improbability of the combination.

Admittedly, the novel combinations have to be
valuable in some way, because to call an idea creative 1s
to say that it is not only new, but interesting.
Combination-theorists typically omit value from their
defimtion of creativity, perhaps because they (mistakenly)
take it for granted that unusual combinations are
always interesting. Also, they often fail to explain how it
was possible for the novel combination to come about.
They take it for granted, for instance, that we can
associate similar ideas or recognize more distant
analogies, without asking just how such feats are
possible.

These cavils aside, what is wrong with the combi-
nation-theory? Many ideas— concepts, theories, paint-
ings, poems, music— which we regard as creative are
indeed based on unusual combinations. For instance,
part of the appeal of the Lennon-McCartney arrange-
ment of Yesterday was their use of a cello, an
instrument normally associated with music of a very
different kind; and poets often delight us by juxtaposing
scemingly unrelated concepts. Many creative ideas,
however, are surprising in a deeper way. They concern
novel 1deas which not only did not happen before, but

which —1n a sense that must be made clear — could not
have happened before.

Before considering just what this ‘could not’ means,
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we must distinguish two senses of creativity. One is
nsychological (let us call it P-creativity), the other
historical (H-creativity). An idea ts P.creative if the
person in whose mind it arises could not have had it
before; it does not matter how many times other people
have already had the same idea. By contrast, an idea is
H-creative if it is P-creative and no-one else has ever
had 1t before.

H-creativity is something about which we are often
mistaken. Historians of science and art are constantly
discovering cases where other people, even m other
periods, have had an tdea popularly attributed to some
individual hero. Whether an idea survives, whether 1t is
lost for 2 while and resurfaces later, and whether
historians at a given point in time happen to know
about it, depend on a wide variety of unrelated factors.
These include fashion, rivalries, ilness, trade-patterns,

economics, war, flood, and fire. It follows that there can
be no systematic explanation of H-creativity.

Certainly, there can be no psychological explanation
of this (historical) category. But all H-creative ideas, by
definition, are P-creative too. So a psychological
explanation of P-creativity would include H-creative
ideas as well.

What does it mean to say that an idea ‘could not’
have arisen before? Unless we know that, we cannot
make sense of P-creativity (or H-creativity either), for
we cannot distinguish radical novelties from mere ‘first-

time’ newness.
An example of a novelty which clearly could have

happened before is a newly-generated sentence, such as
“The pineapples are in the bathroom-cabinet, next to
the oil-paints that belonged to Savonarola’. 1 have
never thought of that sentence before, and almost
certainly no-one ¢lse has, either.

The linguist Noam Chomsky remarked on this
capacity of language-speakers to generate first-time
novelties endlessly, and he called language ‘creative’
accordingly. His stress on the mfinite fecundity of
language was correct, and highly relevant to our topic.
But the word ‘creative’ was ill-chosen. Novel though the
sentence about Savonarola’s oil-paints is, there is a
clear sense in which 1t could have occurred before. For
it can be generated by the same rules that can generate
other English sentences. Any competent speaker of
Enghsh could have produced that sentence long ago—
and so could a computer, provided with English
vocabulary and grammatical rules. To come up with a
new sentence, in general, is not to do something P-
creative.

The ‘coulds’ in the previous paragraph are compu-
tational ‘coulds’. In other words, they concern the set of
structures (In this case, English sentences) described
and/or produced by one and the same set of generative
rules (in this case, English grammar).

There are many sorts of generative system: English
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grammar is like a mathematical equation, a rhyming-
schema for sonnets, the rules of chess or tonal harmony,
or a computer program. Each of these can (timelessly)
describe a certain set of structures. And each might be
used, at one time¢ or another, in actually producing
those structures.

Sometimes, we want to know whether a particular
structure could, in principle, be described by a specific
schema, or set of abstract rules.—Is ‘49’ a square
number? Is 3,591,471 a prime? [s this a sonnet, and is
that a sonata? Is that painting in the Impressionist
style? Could that geometrical thecorem be proved by
Euclid’s methods? Is that word-string a sentence? Is a
benzene-ring a molecular structure that is describable
by early nineteenth-century chemistry (before Friedrich
von Kekule’s famous fireside daydream of 1865)2—To
ask whether an idea is creative or not (as opposed to
how it came about) is to ask this sort of question.

But whenever a particular structure is produced in
practice, we¢ can also ask what generative processes
actually went on in the computational system concer-
ned.— Did a human geometer (or a programj prove a
particular theorem in this way, or in that? Was the
sonata composed by foliowing a textbook on sonata-
form? Did Kekule rely on the then-familiar principles of
chemistry to generate his seminal idea of the benzene-
ring, and if not how did he come up with it?—To ask
how an idea {creative or otherwise) actually arose, is to
ask this type of question.

We can now distinguish first-time novelty from
radical originality. A merely novel idea is one which
can be described and/or produced by the same set of
generative rules as are other, famihar, ideas. A
genuinely original, or creative, idea 1s one which can-
not. So constraints, far from being opposed to creativity,
make creativity possible. To throw away all constraints
would be to destroy the capacity for creative thinking.
Random processes alone can produce only first-time
curiosities, not radical surprises (although randomness
can sometimes contribute to crealivity).

To justify calling an idea creative, then, one must
specily the particular set of generative principles with
respect to which it 1s impossible. Accordingly, psycho-
logists can learn from literary critics, musicologists, and
historians of art and scicnce. But their (largely tacit)
knowledge of the relevant structures must be made as
explicit as possible.

The psychology of creativity can benefit from Al and
compuler science preciscly because —as Lady Lovelace
pointed out—a computer can do only what its
program enables 1t to do. On the onc hand,
computational concepts help us to specily gencrative
principles clearly. On the other hand, computer-
modclling helps us to sce, 1n practice, what a particular
generative system can and cannot do. The results may
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be surprising, for the generative potential of a program
is not always obvious: the computer may do things we
did not know we had ‘ordered it* to perform.

It follows from all this that, with respect to the usual
mental processing in the relevant domain (chemistry,
poetry, music, ---}, a creative idea 1s not just
improbable, but impassible. How did it arise, then, if not
by magic? And how can one impossible 1dea be more
surprising, more creative, than another? If the act of
creation 1S not mere combination, or what Arthur
Koestler called ‘the bisociation of unrelated matrices’,
what is it? How can creativity possibly happen?

Exploring and transforming conceptual spaces

A generative system defines a certain range of
possibilities: chess-moves, for example, or jazz-melodies.
These structures are located in a conceptual space
(what computer scientists would call a search-space)
whose limits, contours, and pathways can be mapped In
various ways. Mental maps, or representations, of con-
ceptual spaces can be used (not necessarily consciously)
to explore the spaces concerned.

When Dickens described Scrooge as ‘a squeezing,
wrenching, grasping, scraping, clutching, covetous old
sinner’, he was exploring the space of English grammar.
He was reminding us (and himself} that the rules of
grammar allow us to use any number of adjectives
before a noun, Usually, we use only two or three; but
we may, if we wish, use seven (or more). That possibility
already existed, although its existence may not have
been realized by us.

A more Interesting, more complex, example of
exploration can be found in the development of post-
Renaissance Western music. This music is based on the
generative system known as tonal harmony.

Each piece of tonal music has a ‘home key’, from
which it starts, from which (at first) it did not stray, and
in which it must fimish. Reminders and reinforcements of
the home key were provided, for instance, by Iragments of
scales decorating the melody, or by chords and
arpeggios within the accompaniment. As time passed,
the range of possible home Xeys became increasingly
well-defined. Johann Scbastian Bach's ‘Forty-cight’, for
example, was a set of preludes and fupues specificatly
designed to ¢xplore-—and clarify -—the tonal range of
the well-tempered keys.

But travelling along the path of the home key alone
became insuflicient]ly chatlenging, Modulations between
keys were then allowed, within the body of the
composilion. At first, only a small number of
modulations (perhaps only one, followed by its ‘cancel-
[ation’) were tolerated, between strictly Limited pairs of
harmonically related keys, Over the years, howeser, the
modulations became increasingly daring, and ncreas-
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ingly frequent uniil 1n the late nineteenth century there
might be many modulations within a single bar, not
one of which would have appeared in early tonal music.
The range of harmonic relations implicit in the system
of tonality gradually became apparent. Harmonies
which would have been unacceptable to the early
musicians, who focussed on the most central or obvious
dimensions of the conceptual space, became common-
place.

Moreover, the notion of the home key was
undermined. With so many, and so daring, modulations
within the piece, a ‘home key’ could be identified not
from the body of the piece, but only from its beginning
and end. Inevitably, someone (it happened to be Arnold
Schoenberg) eventually suggested that the convention
of the home key be dropped altogether, since it no
longer made sense in terms of constraining the
composition as a whole. (Significantly, Schoenberg
suggested various new constraints to structure his
music-making: using every note in the chromatic scale,
for instance.)

Another example of extended exploration was the
scientific activity spawned by Mendeleyev's Periodic

Table. This table, produced in the 1860s for an
introductory chemistry textbook, arranged the elements

in rows and columns according to their observable
properties and behaviour. All the clements within a
given column were in this sense ‘similar. But
Mendeleyev left gaps in the table, predicting that
unknown elements would eventually be found with the
properties appropriate to these gaps (no known element
betng appropriate).

Sure enough, in 1879 a new element (scandium) was
discovered whose properties were what Mendeleyev had
predicted. Later, more elements were discovered to fiil
the other gaps in the table. And later still, the table
(based on observable properties} was found to map
onto a classification in terms of atomic number. This
classification explained why the elements behaved in the
systematic ways noted by Mendeleyev.

However, exploring a conceptual space 1s ong thing:
transforming it is another. What is it to transform such
a space?

One example has been mentioned already: Schoen-
berg’s dropping the home-key constraint to create the
space of atonal music. Dropping a constraint 1s a
general heuristic, or method, for transforming concep-
tual spaces.

Non-Euclidean geometry, for instance, resulted from
dropping Euchd’s fifth axiom, about parallel lines
meeting at infinity. (One of the mathematicians
responsible was Lobachevsky, immortalized not only 1n
encyclopaedias of mathematics but also in the songs of
Tom Lehrer) This transformation was made ‘playfully’,
as a prelude to exploring a geometrical space somewhat
different from Euclid’s. Only much later did it turn out
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to be useful tn physics.

Another very general way of transforming conceptual
spaces is to ‘consider the negative™ that is, to negate a
constraint. One well-known instance concerns Kekule’s
discovery of the benzene-ring. He described it like this
{(quoted in ref. 4, p 39):

I turned my chair to the fire and dozed. Again the atoms were
gambolling before my eyes. ... (My mental eye) could
distinguish larger structures, of manifold conformation; long
rows, sometimes more closely fitted together, all twining and
twisting in snakelike motion. But look! What was that? One
of the snakes had seized hold of its own tail, and the form
whirled mockingly before my eyes. As if by a flash of lightning
[ awoke.

This vision was the ongm of his hunch that the benzene-
molecule might be 2 rning, a hunch which turned out to
be correct.

Prior to this experience, Kekule had assumed that all
organic molecules are based on strings of carbon atoms
(he himself had produced the string-theory some years
earlier). But for benzene, the valencies of the constituent
atoms did not fit.

We can understand how it was possible for him to
pass from strings to rings, as plausible chemical
structures, if we assume three things. First, that snakes
and molecules were already associated in his thinking.
Second, that the topological distinction between open
and closed curves was present in his mind. And third,
that the ‘consider the negative’ heuristic was present
also. Taken together, these three factors couid
transform ‘string’ into ‘ring’.

(Kekule tells us himself that the first of these
assumptions is correct; and recent computational work
on ‘connectionist’ systems, or ‘neural nets’, is helping us
to understand how such associations are possible. As
for the other two assumptions, there is independent
psychological evidence that they are true of human
minds in general.)

A string-molecule is what topologists call an open
curve, Toplogy is a form of geometry which studies not
size or shape, but neighbour-relations. An open curve
has at least one end-point (with a neighbour on only
one side), whereas a closed curve does not. An ant
crawling along an open curve can néver visit the same
point twice, but on a closed curve it will eventually
return to its starting-point. These curves need not be
curvy in shape. A circle, a triangle, and a hexagon are
all closed curves; a straight line, an arc, and a sine-wave
are all open curves.

If one considers the negative of an open curve, one
gets a closed curve. Moreover, a snake biting its tail is a
closed curve which one had expected to be an open one.
For that reason, it js surprising, even arresting (‘But
look! What was that?). Kekule might have had a sinular
reaction if he had becen out on a country walk and
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happened to see a snake with its tail in its mouth. But
there 1s no reason to think that he would have been
stopped in his tracks by seeing a Victorian child's hoop.
A hoop is a hoop, is a hoop: no topological surprises
there,

Finally, the change from open curves to closed ones
is a topological change, which by definition will alter
neighbour-relations. And Kekule was an expert chemist,
who knew very well that the behaviour of a molecule
depends not only on what the constituent atoms are,
but also on how they are juxtaposed. A change
atomic neighbour-relations is very likely to have some
chemical significance. So 1t is understandable that he
had a hunch that this tail-biting snake-molecule might
contain the answer to his problem,

Computer programs and the arts

Many artists use computers as tools, to help them create
things they could not have created otherwise. So-called
‘computer music’, for instance, may use sounds which
no orchestra could produce. A visual artist may get
ideas from computer graphics. And even the humble
word-processor plays a part in many literary efforts.
But these examples are of httle interest here.

We ‘are concerned with those programs which
produce aesthetically interesting creations themselves,
or which (in their attempts to do so) throw light on the
psychological processes undertying human art. There
are a number of programs which explore artistically
interesting spaces, and a few which produce aesthetically
acceptable results. As yet, however, there is no ‘artistic’
program which transforms its space in significant ways.

For example, Harold Cohen (already a well-known
painter when he started working with computers) has
written a series of programs which produce pleasing,
and unpredictabie, line-drawings®. (I have one in my
office, and on several occasions a visitor has
spontancously remarked ‘1 like that drawing! Who did
it?} These have been exhibited at the Tate and other
major art-galleries siound the world, and not just for
their cunosity-value.

Fach of Cohen’s programs explores a certain style of
line-drawing and a certain subject-matter. The program
may draw acrobats with large beach-balls, for instance,
or human figures in the profuse vegetation of a jungle,
(As yet, he has not written a colouring-program which
satisfies him; mcanwhile, he sometimes colours his
programs’ drawings by hand.)

Much as human artists have to know about the
things they are depicting, so cach of Cohen's programs
needs an internal model of s subject-matter. This
model 18 pot a physical object, bke the articulated
wooden dolis Tound in artists® studios, but a penerative
system. I is a set of abstract rules which specafy, for
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instance, not only the anatomy of the human body (two
arms, two legs), but also how the various body-parts
appear from various points of view. An acrobat’s arm
pointing at the viewer will be foreshortened; a flexed
arm will have a bulging biceps; and an arm lying
behind another acrobat’s body will be invisible.

The program can draw acrobats with only one arm
visible (because of occlusion), but it cannot draw one-
armed acrobats. Its model of the human body does not
allow for the possibility of there being one-armed
people. If it were capable of ‘dropping’ one of the limbs
(as a gecometer may drop Euclid’s fifth axiom), it could
then draw one-armed, and one-legged, figures. But the
resulting pictures might not be so plausible, nor so
pleasing. The reason is that its current world-model
contains rules dealing with human stablity and picture-
balance, some of which may implicitly or explicitly
assume that all people have four limbs. If so, a three-
limbed person (assuming one hmb were ‘dropped’)
might be drawn In an impossible bodily attitude.
Human artists drawing a one-armed person would not
do this, unless they were deliberately contravening the
laws of gravity (as in a Chagall dreamscape).

The psychological interest of Cohen's work is that
the constraints— anatomical, physical, and aesthetic—
written into his programs are perhaps a subset of those
which human artists respect when drawing in compar-
able styles. A host of questions arise about just what
those constraints may be, And a host of issues can be
explored by building additional or alternative rules into
Cohen’s programs, and examining the range of
structures that result.

However, Cohen’s programs are like hack-artists,
who can draw only in a given style. The style may be
rich enough (the generative system powerful enough) to
make their drawings individually unpredictable. But the
style 1tself is easily recognized.

At present, only Cohen can change the constraints
built into the program, so enabling it to draw pictures
of a type which it could not have drawn before. But
some programs, perhaps including some yet to be
written by Cohen, could do so for themsclves.

To be able to transform its style, a program would
need (among other things) a meta representation of the
lower-level constraints it uses. For instance, if it had an
explicit representation of the fact that it normally draws
four-imbed people, and if it were given very general
"transformation heunistics' (like ‘drop a constraint’ and
‘consider the negative’), it might sometimes omit one or
more  himbs., Recent  evidence from  developmental
psychology®’  suggests  that  this  sort of  evpheit
representiation of 4 fower-level drawine-shill is required
i 4 young child is 1o be able to draw o vne-arned man,
or a seven-legped dop, (Comparable evidence suppests
that Rexibility in other shlls, including Language, abo
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Figure 1 Figure 2

Figure 3 Flgure 4
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Figure 5

CURRENT SCIENCE, VOL. 64, NO. 6, 25 MARCH 1993

Figure 6

Figure 1. 'Two Inends’, a painting {computer-generated drawing), o1l
on canvas. Collectron Hendel. © Becky Cohen Figure 2. Hand-
colored computer-generated drawing. Flgure 3. Hand-colored
computer-generated drawing, ol on canvas. Collectton Hende|
Figure 4. Hand-colored computer-generated drawing  Figure .
‘Herb with wall hanging’, a painting (computer-generated drawing}, oil
on canvas. (O Becky Cohen Figure 6. ‘Meetng on Gaugumn's
beach’, oil on canvas. Collection: Gwen and Gordon Bell Figure 7.
‘Two men on the edge’. oil on canvas Nofe In all the hgures. the
original drawing is by the AARON program, written by Harold Cohen.
Photograp g its are to Becky Cohen
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requircs the development of gencrative systems which
cxplicitly represent lower-level systems.)

A second example of an ‘artistic’ program is the jazz-
improviser written by Philip Johnson-Laird®®. This has
appeared 1n no concert-halls, and at first hearing seems
much less impressive than Cohen’s programs (Johnson-
Laird reports that it performs at the level of a
moderately competent beginner). However, it raiscs
some highly specific questions —and provides some
suggestive answers—about the nature of the complex
conceptual space involved, and about how human

minds are able to explore it.
A jazz-musician starts with a chord-sequence, such as

a twelve-bar blues. (The performance will be an
improvisation based on a fixed number of repetitions of
the chord-sequence.) Oiten, the chord-sequence has
already been written by someone else. For writing such
sequences, unless they are kept boringly simple,
typically requires a great deal of time and effort. They
are complex hierarchical structures, with sub-sections
‘nested’ at several different levels, and with complex
harmonic constraints linking sometimes far-separated
chords. They could not be improvised ‘on the fly’
(where no backtracking is possible), but require careful
thought and self-correction.

To take an analogy from language, consider this
sentence: The potato that the rat that the cat that the
flea bit chased around the block on the first fine Tuesday
in May nibbled is rotting. You probably cannot
understand this  multiply-nested sentence without
pencilling-in the phrase-boundaries, or at least pointing
to them. If someone were to read it aloud, without a
very exaggerated intonation, it would be unintelligible.
Moreover, you would find 1t difficult, perhaps
impossible, to invent such a sentence without writing it
down. For you cannot select the word is without
remembering potato, twenty-two words before. (If you

had started with The potatos --+ you would have needed
are mstead.)

Similarly, jazz-composers cannot improvise compli-
cated chord-sequences. Indeed, they have developed a
special written notation to help them to keep the
various harmonic constraints in mind while composing
such sequences.

The jazz-musician’s task, in playing a chord-
sequence, 18 more difficult than yours in reading a
sentence. For he is improvising, rather than merely
reading. The ‘chords’ in the chord-sequence are actually
classes of ¢chords, and the player must decide, as he goes
along, just how to play each chord. He must also decide
how to pass to the next chord, how to produce a
melody, how to harmonize the melody with the chords,
how to produce a bass-line accompaniment, and how to
keep the melody n step with the metre.

Johnson-Laird argucs that, because of the limited
storage-capacity of human short-term memory, the
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rules (or musical ‘grammar’) used for generating these
features of the performance must be much less powerful
than the hierarchical grammar used to produce chord-
sequences. Accordingly, his program consists of two
parts.

One part generates a simple, harmonically sensible,
chord-sequence (compare ‘The potato 1s rotting’), and
then complicates It in various ways to produce a nested
hierarchical structure (comparable to a grammatically
complex sentence). The second part takes that chord-
sequence as its 1nput, and wuses less powerful
computational rules to improvise a performance in real
time. What counts as an acceptable ‘melody’, for
instance, 1s determined by very simple rules which
consider only a few previous notes; and the harmonies
ar¢ chosen by reference only to the immediately
preceding chord.

When more than onc choice is allowed by the rules,

the program chooses at random. A human musician

might do the same. Or he might choose according to
some 1diosyncratic preference for certain intervals or
tones, thus giving his playing an ‘individual’ style. {The
same obviously applies for Iiterature and painting.} This
15 one of the ways in which chance, or randomness, can
contribute to creativity. But it is the constraints—
governing harmony, melody, and tempo — which make
the jazz-performance possibie in the first place. Without
them, we would have a mere random cacophony.
Besides harmony, melody, and tempo, there are other

structures which inform music. Piano-music, for
example, 1s composed to be played expressively

{composers often put expression-marks in the scorg),
and human musicians can play it with expression.
Indeed, they have to: without expression, a piano-
composition sounds musically dead, even absurd. In
rendering the notes in the score, pianists add such
features as legato, staccato, piano, forte, sforzando,
crescendo, diminuendo, rallentando, accelerando, ritenuto,
and rubato (not to mention the two pedals).

But how? Can we express this musical sensibility
precisely? That 1s, can we specify the relevant

conceptual space? Just what is a crescendo? What is a
rallentando? And just how sudden is a sforzando?
These questions have been asked by Christopher
Longuet-Higgins!® (whose earlier work on the concep-
tual space of tonal harmony was used within Johnson-
Laird’s jazz-program). Using a computational method,
he has tried to specify the nature of the musical skills
concerned. Working with Chopin's Minute Waltz and
Fantaisie Impromptu in C Sharp Minor, Longuet
Higgins has discovered some counterintuitive facts
about the conceptual space concerned. For example, a
crescendo 1s not uniform, but exponential (a uniform
crescendo does not sound like a crescendo at all, but
ltke someone turning-up the volume-knob on a
wireless), similarly, a rallentando must be exponentially
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graded (in relation to the number of bars in the relevant
section) if 1t is to sound ‘right’. Where sforzandi are
concerned, the mind i1s highly sensitive; as little as a
centiseccond makes a difference between acceptable and
clumsy performance. By contrast, our appreciation of
piano and forte is less sensitive than one might expect,
for (with respect to these two compositions, at least)
only five levels of loudness are needed to produce an
acceptable performance. More facts such as these, often
demonstrable to a very high level of detail, have been
discovered by Longuet-Higgins’ computational experi-
ments. As he points out, many interesting questions
concern the extent to which they are relevant to a wide
range of music, as opposed to a particular musical style.

Strictly speaking, this work is not a study of
creativity, It is not even a study of the exploration of a
conceptual space, never mind its {ransformation. But it
is highly relevant to creativity (as 18 Longuet-Higgins’
earlier computational work on harmony). For we have
seen that creativity can be identified only with respect
to a particular generative system, or conceptual space.
The more clearly we can identify this space, the more
confidently we can identify and ask questions about the
creativity involved in negotiating it. A pianist whose
playing-style sounds ‘original’ may be exploring and
transforming the space of expressive skills which
Longuet-Higgins has studied.

Of course, we can recognize this originality ‘intustively’,
and enjoy—or regject—the pianist’s novel style
accordingly. Likewise, we can enjoy—or reject—
drawings done by human artists or by computer
programs. But understanding, in rigorous terms, just
how these creative activities are possible i1s another
matter. If that 1s our aim, computational concepts and
computer modelling can help.

What of Iiterature? There are many different
conceptual spaces involved here. One of these concerns
human motivation, the various psychological structures
that are possible—and intelligible —within human
action and interaction. Most novels and short-stories
are less concerned with transforming this space than
with explornng it in itlluminating ways. '

Current computer programs that write stories are
woefully inadequate compared with human story-
tellers. But the best of them get what strength they
nossess from their internal models of very general
aspects of motivation. Consider this example, written
by a program asked to write a story with the moral
‘WNever trust flatterers™

The fox and the crow

Once upon a time, there was a dishonest fox named Henry
who lived in a cave, and a vain and trusting crow named Joe
who hved in an elm-tree, Joe had gotien a piece of cheese and
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was holding it in his mouth. One day, Henry walked from his
cave, across the meadow to the elm-tree, He saw Joe Crow
and the cheese and became hungry. He decided that he might
get the cheese if Joe Croy spoke, so he told Joe that he liked
his singing very much and wanted to hear him sing. Joe was
very pleased with Henry and began to sing. The cheese fell
out of his mouth, down to the ground. Henry picked up the
cheese and told Joe Crow that he was stupid. Joe was angry,

and didn’t trust Henry any more. Henry returned to his cave.
THE END.

Exciting, this little tale is not. But it has a clear
structure and a satisfactory end. The characters have
goals, and can set up subgoals to achieve them. They
can cooperate mn cach other’s plans, and trick each
other so as to get what they want. They can recognize
obstacles, and sometimes overcome them. They can ask,
imform, reason, bargain, persuade, and threaten. They
can e¢ven adjust their personal relationships according
to the treatment they get, rewarding rescue with loyalty
or deception with mistrust. And there are no loose ends
left dangling to frustrate us.

The reason is that this program can construct
hierarchical plans, ascribing them to the individual
characters according to the sorts of motivation (food-
preferences, for example) one would expect them to
have. It can think up cooperative and competitive
episodes, since 1t can give one character a role (either
helpful or obstructive) in another’s plan. These roles
need not be allocated randomly, but can depend on
background interpersonal relations (such as competi-
tion, dominance, and familiarity). And 1t can represent
different sorts of communication between the characters
(such as asking, or bargaining), which constrain what
follows in different ways. All these matters (like the
body-models in Cohen’s programs) are represented as
abstract schemata, or generative systems, which are
used to produce the story-structure.

A story-writer equipped not only to do planning, but
also to juggle with psychological schemata such as
escape, ambition, embarrassment, or betrayal could
come up with better stories still. To design such a
program would be no small feat. Every psychological
concept involved in the plots of its stories, whether
explicitly named in the text or not, would need to be
defined —much as ‘stability’ had to be defined for the
acrobat-drawing program, and ‘melody’ for the jazz-
IMProviscr.

The complexities are so great (and the background
knowledge of the world so extensive) that it is
unrealistic to expect there to be a computerized story-
writer that can perform at better than a hach-level-—if
that. But our interest here is not in getting computers
to do our creative acts for us, but in using the compu-
tational approach to help us understand what s
involved when we do them. The complexity of the mind
that is able to read Hamlet with understanding is
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staggering, never mind the complexities involved 1n
writing it.

Hamlet — or Macheth. You may remember Macbeth's
descnption of sleep:

Sleep that knuts up the ravelled sleeve of care,
The death of each day’s hfe, sore labour’s bath,
Balm of hurt minds, great nature’s second course,
Cheefl nounisher in life’s feast.

This pacsage works because Shakespeare’s readers, like
him. know about such worldly things as knitting, night
and Jday, and the soothing effects of a hot bath. In
addition, they are able to understand analogies, even
highly unusual or ‘creative’ analogies, such as com-
paring sleep with a knitter. But how can this be? A
knitter is an animate agent, but sleep 1s not. How can
the human mind map ‘sleep’ onto ‘knitter’ so as to
realize the link: that both can repair the ravages of the
previous day? Similarly, how can we understand
Socrates’ remark (in Plato’s Theaetetus) that the
philosopher is ‘a midwife of ideas’? A philosopher is not
(usually’) a midwife. And while a new idea is indeed
new, vulnerable, and perhaps flawed —like a baby—it
is nevertheless very different from a baby. Like sleep,
ideas are not even amimate. How, then, can someone
create, or creatively interpret, such a strange comparnson?

A recent computational model of analogy has
successfully mterpreted the philosopher-midwife analogy,
mapping ‘idea’ onto ‘baby’ as required. This program is
an example of a connectionist system. Such systems can
help us to understand the psychology of pattern-recog-
nition and analogy, and of ‘creative’ associations such
as poetic imagery or Kekule’'s bringing-together of
molecules and snakes.

A connecttonist system 1nvolves many units, each
coding one (often very simple) feature. The units are
linked by excitatory and inhibitory connections (as are
neurons In the brain). Units coding for mutually
consistent features will tend to excite each other’s
activity, whereas mutually inconsistent units will inhibit
each other. For instance, a unit coding for ‘white’ may
excite both ‘cream’ and (less strongly) ‘yellow’, but it
will inhibit ‘blue’, ‘red’, and (above all) ‘black’.

These Al-models can take many different constraints
:to account at the same time, where no constraint is
necessary but a large number are suflicient for making
the judgment concerned. It follows that they are
tolerant of ‘noise’ (missing or spurious information).
Not surprisingly, then, cornectionist systems are better
than traditional Al-programs at modelling pattern-
association, And stnce they can associate similar but
non-tdentical patterns, they ofler a promising basis for
studying analogy.

The analogy-program let loose on Socrates’ analogy
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is bascd on a semantic network containing over thirty
thousand words. The words are linked to one another
more in the way of a thesaurus than a dictionary, for
they bear links not only to synonyms and defining
properties, but to less closely related words as well.
(They also bear links to their opposites, as a thesaurus-
entry does too; so this network could readily support
many different uses of ‘consider the negative’} These
scmantic links are there not just because they are useful
in getting the computer to do interesting things, but
also because there is extensive psychological evidence
that concepts in human minds are stored in broadly
similar ways.

Using an analogy-mapper that compares concepts in
termms of structural similarity, semantic centrality, and
pragmatic (contextual) importance, this connectionist
program interpretcd Socrates’ analogy successfully.
That 15, asked to come ap with the ‘best’ equivalent of
‘baby’, it came up with ‘idea’—even though it
recognized the inconvenient fact that a central feature
of a baby (its being alive) does not hold of an idea.
After this mapping has been effected, of course, one can

then describe 1deas as alive, or as more or less worthy
of survival. In other words, one can use the very feature

which 1s missing in one pole of the analogy to explore
that pole 1tself.

The analogy-interpreter has a ‘sister-program’ which
comes up with analogies, as oppesed to interpreting
ready-made analogies input to it. In its current form, it

would not spontaneously generate the idea-baby or
sleep-knitter comparisons, because it looks for the ‘best’

——that 1s, the closest— analogy it can find. Even if it
were told to ignore the twenty best compansons, it
would not come up with either of these notions. The
reason 1s that the designers were primarily interested in
the use of analogy in science, not in rhetoric or poetry.
In poetry, distance between the two poles of the
analogy 1s often preferred.

One could allow the program to generate highly
distant analogies, but this would risk the production of
‘wild’ or ‘crazy’ comparisons. The context of a poem
provides additional constraints which keep the wildness
within the bounds of intelligibility. In the four-line
fragment of Macbeth’s speech, for instance, there is a
succession of tmages for sieep each of which (even
‘death’) suggests some alleviation of previous troubles.
The wildness of each individual analogy is thus
tempered by the mutually reinforcing semantic associa-
tions set up by all the others. Even human minds
cannot always use contextual associations fruitfully, nor
even recognize them (a parliamentary candidate
recently sent out leallets showing her photographed in a
neglected graveyard). Giving a program the grasp of
semantic space needed to generate wild-yet-persuasive

analogies, instead of close ones, would be a major
exXercise,
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Programs and scientific discovery

Several ‘inductive’ programs have come up with useful
(in some cases, H-novel) scientific ideas. For instance, a
suite of programs designed to find simple mathematical
and classificatory relations has ‘rediscovered” many
important physical and chemical laws''. And an expert
system (dealing with a strictly limited area of
stereochemistry) has drawn chemists’ attention to
molecules they had not previously thought of' %13, Like
the systems discussed in the previous section, however,
these programs are exploratory rather than transforma-
tional.

Programs capable of transforming their own con-
ceptual space are still few and far between, One such is
the ‘Automatic Mathematician® (AM)'*!°, This system
does not produce proofs, nor solve mathematical
problems. Rather, it generates and explores mathe-
matical ideas, coming up with new concepts and
hypotheses to think about.

AM starts out with 100 very primitive mathematical
concepts drawn from set-theory (including sets, lists,
equality, and operations). These concepts are so basic
that they do not even include the ideas of elementary
arithmetic. To begin with, the program does not know
what an integer 1s, still less addition, subtraction,
multiplication, and division.

Also, AM 1is provided with about 300 heuristics.
These can examine, combine, and transform AM’s
concepts—mcluding any compound concepts built up
by it. Some are very general, others specific to set-
theory, and they enable AM to explore the space
potentially defined by the primitive concepts. This
exploration involves conceptual change, by means of
various combinations and transformations,

For example, AM can gencrate the inverse of a
function. This heuristic (a mathematical version of
‘consider the negative’) enables the program to define
multiplication having already defined division, or to
define square-roots having already defined squares.
Another transformation generalizes a concept by
changing an ‘and’ into an ‘or’ (compare relaxing the
membership-rules of a club, from ‘Anyone who plays
bridge and canasta’ to ‘Anyone who plays bridge or
canasta’).

However, AM does not consider every negative, nor
change every ‘and’ into an ‘or’, Time and memory do
not allow this. Like all creative thinkers, AM nceds
hunches to guide 1t along some paths rather than
others. And it must evaluate its hunches, if it is to
appreciate s own creativity. Accordingly, some of
AM’s heunstics suggest which sorts of concept are
likely to be the most interesting. If it decides that a
concepl Is interesting, AM concentrates on exploring
that concept. For example, 1t takes note if it finds that
the union of two scts has a simply expressible property
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that is not possessed by either of them. This is a
mathematical version of the familiar notion that
emergent properties are interesting. In general, we are
interested if the combination of two things has a
property which neither constituent has.

AM’s hunches, like human hunches, are sometimes
wrong. Nevertheless, 1t has come up with some
extremely powerful notions. It produced many
arithmetical concepts, including integer, prime, square
root, addition, and multiplication. 1t generated, though
did not prove, the fundamental theorem of number
theory: that every number can be uniquely factorized
into primes, And it suggested the interesting idea
(Goldbach’s conjecture) that every even number greater
than two is the sum of two different primes. It defined
several concepts of number theory by following unusual
paths —in two cases, inspiring human mathematicians
to produce much shorter proofs than were previously
known. It has even originated one minor theorem
which no-one had ‘ever thought of before (concerning
‘maximally-divisible’ numbers, which AM’s programmer
knew nothing about). In short, AM appears to be
significantly P-creative, and slightly H-creative too.

Some critics have suggested that this appearance is
deceptive, that some of the heuristics were specifically

included to make certain mathematical discoveries
possible. In reply, AM’s programmer insists that the

heuristics are fairly general ones, not special-purpose
tricks. On average, he reports, each heuristic was used
in making two dozen different discoveries, and each
discovery involved two dozen heuristics. Even so0, a
given heuristic may have been used only once, in
making an especially significant discovery. (A detailed
trace of the actual running of the program would be
nceded to find this out) The question would then arise
whether it had been put in for that specific purpose, or
for exploring mathematical space in a more general
way. The precise extent of AM’s creativity, then, is
unclear. But we do have some specific ideas about what
sorts of questions are relevant.

Whereas AM has heunistics for altering concepts, a
successor-program (EURISKO)'*~™!7 possesses heu-
ristics for changing heuristics. As a result, EURISKO
can explore and transform not only its stock of
concepts, but its own processing-style.

For e¢xampic, one heunstic asks whether a rule has
ever led to any interesting result. If it has not (given
that it has been used several times), it 3s marked as less
valuable — which makes it less likely to be used in
(uture. What if the rule has occasionally been helpful,
though usually worthless? Another heuristic, on notic-
ing this, sugpests that the rule be specialized. The new
heuristic will have a narrower range of application than
the old one, so will be tried fess often (thus saving
cflort). But it will be more hhely to be useful in those
cases where it s tried.
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Moreover, the ‘specializing-heurnistic’ can be apphed
to itself. Because it is sometimes useful and sometimes
not, FURISKO can consider specializing it in some
way. The program distinguishes several sorts of specia-
lization, and has heuristics for all of them. Each is
plausible, for each is often (though not always} heipful.
And each 1s useful in many different domains. One form
of specialization requires that the rule being considered

has been uscful at least three times. Another demands
that the rule has been very usclul, at least once. Yet

another insists that the newly specialized rule must be
capable of producing all the past successes of the
unspecialized rule. And a fourth heuristic specializes the
rule by taking it to an extreme.

Other heuristics work not by specializing rules, but
by generalizing them. Generalization, too, can take
many forms. Still other heuristics can create new rules

by analogy with old ones. Again, various types of -

analogy can be considered.

With the help of various packets of specialist
heuristics to complement these general ones, EURISKO
has been applied in several diflerent areas. It has come
up with some H-novel ideas, concerning genetic
engineering and computer-chip (VLSI} design. Some of
its ideas have even been granted a US patent (the US
patent-faw insists that the new idea must not be
‘obvious to a person skilled in the art’),

A third example of a self-transforming program uses
IF-THEN rules to regulate the transmission of oil
through a pipeline in an economical way. It receives
hourly measurements of the oil-inflow, oil-outflow, inlet-
pressure, outlet-pressure, rate of pressure-change, season,
time of day, time of year, and temperature. Using these
data, it alters the inlet-pressure to allow for vanations
in demand, infers the existence of accidental leaks, and
adjusts the inflow accordingly.

But the program was not told which rules to use for
adjusting nflow, or for detecting accidental leaks. It

discovered them for itself. It started from a set of
randomly generated rules, which it repeatedly trans-

formed in part-random, part-systematic, ways. To do
this, 1t used heurnistics called genetic algorithms!2, These
enable a system to make changes that are both
plausible and unexpected, for they produce novel
recombinations of the most useful parts of existing
riles.

As the name suggests, these heuristics are inspired by
biological ideas, Some genctic changes are isolated
mutations in single genes, But others involve entire
chromosomes. For example, two chromosomes may
swap their left-hand sides, or their midsections (the
point at which they break is largely due to chance). If a
chromosome contained only six genes, then the strings
ABCDEF and PQRSTU might give ABRSTU and
PQCDEF, or ABRSEF and PQCDTU. Such trans-
formations can happen repeatedly, in successive genera-
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tions. The strings that eventually result are unexpected
combinations of genes drawn from many different
sources. Genetic algorithms in computer programs
produce novel structures by similar sorts of trans-
formation.

In general, the plausibility of the new structures
produced by this sort of exploratory transformation is
increased if the swapped sections are coherent mini-
sequences. However, there is a catch—or rather,
several. The first 1s that a self-adapting system must
somehow identify the most useful ‘coherent mini-
sequences’. But these never function in isolation: both
genes and ideas express their inflluence by acting in
concert with many others. The second is that coherent
mini-sequences are not always sequences. Co-adapted
genes (which code for biologically related functions)
tend to occur on the same chromosome, but they may
be scattered over varicus points within it. Similarly,
potentially related ideas are not always located close to
each other in conceptual space. Finally, a single unit
may enter more than one group: a gene can be part of
different co-adaptive groups, and an idea may be
relevant to several kinds of problems.

Programs based on genctic algorithms help to
explain how plausible combinations of far-distant units
can nevertheless happen. They can identify the useful
parts of individual rules, even though these parts never
exist in 1solation. They can identfy the significant
interactions between rule-parts {their mutual coherence),
even though the number of possible combinations is
astronomical. And they can do this despite the fact that
a given part may occur within several rujes. Their initial
IF-THEN rules are randomly generated (from task-
relevant units, such as pressure, increase, and inflow),

but they can end up with self-adapted rules rivalling the
expertise of human beings.

The role of natural selection is modelled by assigning
a ‘strength’ to each rule, which is continually adjusted

according to its success (in controlling the pipeline, for
instance). The relevant heuristic is able, over nime, to
identify the most useful rules, even though they act in
concert with many others—including some that are
useless, or even counter-productive. The strength-
measure enables the rules to compete, the weak ones
gradually dropping out of the system. As the average
rule-strength rises, the system becomes better adapted
to the task-environment.

The role of variation is modelled by heuristics
(genetic operators) that transform the rules by swapping
and Inserting parts in ways like those outlined above.
For instance, the ‘ctossover’ operator swaps a randomly
selected segment between each of two rules. Each
segment may initially be in a rule’s 1F-section or its
THEN-section. In other words, the crossover heuristic
can change either the conditions that result in a certain
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action, or the action to be taken in certain conditions,
or both.

One promising strategy would be to combine the
effective components of several high-strength rules.
Accordingly, the genetic operators pick only rules of
relatively high strength. But the effective components
must be identified (a2 rule may include several
conditions in its IF-side and several actions in its
THEN-side). The program regards a2 component as
effective if it occurs in a large number of successful
rules. A ‘component’ need not be a sequence of
juxtaposed units. It may be, for instance, two sets of
three (specified) neighbouring units, separated by an
indefinite number of unspecified units. The huge
number of possible combinations do not have to be
separately defined, nor considered in strict sequénce. In
effect, the system considers them all in parallel (taking
into account its estimate of various probabilities in the
environment concerned).

Some philosophical puzzles

What of the fourth Lovelace-question? Someone who
agrees that a computer could mimic human creativity
to a very high degree may nevertheless refuse to credit
any computer with real creativity. No matter- how
impressive the performance, it must (on this view) be
mere empty mumicry. If so, then the answer to the
fourth Lovelace-question 1s a resounding ‘No¥.

The belief that no computer could really be creative
can be defended in several different ways. Let us
constder just two of them: the brain-stuft argument and
the non-human argument.

The brain-stuff argument relies on a factual hypothesis:
that whereas neuroprotein is a kind of stuff which can
support int¢lligence, metal and silicon are not.

The hypothesis dniving this argument may, con-
ceivably, be true. Possibly, computers are made of a
sort of matenal stuff which is incapable of supporting
creattve intelligence. Indeed, neuroprotein may be the
only substance in the universe which has this power.
Then again, it may not: there may be thinking creatures
on Mars with alien chemicals filling their heads. Science
does not tell us this is impossible. But nor does science
give us any good reason, at present, to think that metal
and silicon are essentially incapable of embodying the
many stable yet adaptive structures involved in creative
thought.

Some people regard it as intuitively obvious that
these matenals ¢annot support intelligence, whereas
neuroprotein can. But this is not obvious at all.
Certainly, neuroprotein does support intelligence, mean-
ing, and creativity. But we understand almost nothing
of how 1t does 50, qua neuroprotein—as opposed (o
some other chemical stull.
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Indeed, insofar as we do understand this, we focus on
the neuro-chemistry of certain basic computational
functions embodied in neurones. message-passing, facilita-
tion, inhibition, and the like. Neurophysiologists have
discovered the ‘sodium-pump’, for instance. This is the
electrochemical process, occurring at the cell-membrane,
which enables an electrical signal to pass (without
losing strength) from one end of a neurone to the other.
But this mechanmsm is psychologically interesting only
to the extent that it helps us to understand psychologi-
cally relevant functions. Any other chemical process
would do, provided that it alilowed a neurone to
propagate a message ffom one end to the other.

The fact that we cannot see how metal and silicon
could possibly support ‘real’ intelligence is irrelevant.
For, intuitively speaking, we cannot see how neuro-
protein — that gray mushy stuff inside our skulls—can
do so either. No mind-matter dependencies are
intuitively plausible. Nobody who was puzzled about
intelligence (as opposed to electrical activity In
neuroncs) ever exclaimed ‘Sodium—of course’. Sodium-
pumps are no less ‘obviously’ absurd than silicon chips,
electrical polaritics no less ‘obvicusly’ irrelevant than
clanking metal. Even though the mind-matter roles of
sodium-pumps and clectrical polarities are scientifically
compelling, they are not intuitively inteiligible. On the
contrary, they arc highly counter-intuitive.

Our intuitions will doubtless change, as science
advances. Future gencrations may come to see
neuroprotein—and perhaps stlicon, too—as ‘obviously’
capable of embodying mind, much as we now see¢
biochemical substances as obviously capable of produc-
ing other such substances (a fact regarded as intuitively
absurd, even by most chemists, before the synthesis of
urca in the nmeteenth century). As yet, however, our

intuitions have nothing useful to say about the material
basis of intelligence.

In sum, the brain-stufl argument is inconclusive. It
reminds us that computers made of non-biclogical
materials may be incapable of real creativity. But it
gives us no reason whatever to believe that this is
actually so.

The non-human argument holds that to regard
computers as really creative is not a mere factual
mistake, but a moral absurdity. To answer *Yes' to the
fourth Lovelace-question, on this view, would be to
grant certain rights to computers which should be
granted only to people.

Each of us has aims, fcars, and beliefs, all of which —
unless the contrary can be specifically shown —deserve
to be respected. Everyone has a right to be heard, a
right to try to persuade others, and a right to further
their interests. These rights are fundamental to human
socicty. Supporters of the non-human argument insist
that we should forever refuse to allow computers any
social roles hike those enjoyed by people,
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To remove all the scare-quotes from psychological
words when describing computer programs, to regard
them as literally intelligent and creative, would be to
admit them into our moral universe. We should then
have to respect their interests, even-—on occasion —
above our own. (So someone late for an appointment
might excuse himself not by saying ‘I had to take the dog
for his walk® but ‘I had to find a reference for my
computer, which wanted to finish the Times crossword
before starting on its maths problems’.) Similarly, to
regard computer-systems as really intelligent would
mean that they could be deceived and that, all things
being equal, we should not deceive them. It would
mean, too, that they could really know the things they
were apparently saying, so we could really trust them.

The last example has already come up in the English
law-courts. A man was accused of stealing banknotes,
and the prosecution submitted a list of banknote-
numbers, some of which matched notes found in his
possession. In law, documents accepted as evidence
must be produced by someone ‘having knowledge of
their contents. But the crucial list had been produced
by the bank’s computer. Because a computer (so the
judge said) cannot have any knowledge of anything, the
accused was acquitted.

Presumably, you regard this as an unsatisfactory
outcome. But whatever you think the lawyers should
have said in this case, the crucial point is that the
decision to remove all scare-quotes when describing
programs in psychological terms would carry significant
moral overtones. So, like moral decisions in general, it
cannot be forced upon us by the facts alone.

Finally, we must consider the common fear that a
scientific explanation of creativity (whether computa-
tional or not} would not merely demystify creativity,
but destroy it as well. Many people regard science as
dehumanizing, in the sense that it ignores—or even
denics —the existence of purpose, freedom, and sub-
jectivity. Accordingly, they assume that a scientific
psychology would at best devalue creativity, and at
worst deny it.

The natural sciences have indeed been insidiously
dehumanizing. For they have had no concepts capable
of expressing subjectivity, no way of describing —still
less explaining—how human minds can construct their
personal worlds tn culturally diverse and idiosyncratic
ways. Their silence on matters of the mind, given their
many successes and high social status, have (as William
Blake foresaw) de-emphasized the phenomena which
humanists value most. ‘Tough-minded” psychologists
(behaviourists, for instance) have been the worst
oflcnders, often explicitly denying the reality or
scientific interest of the matters intuitively discussed by
‘tender-minded’ humanists.

But now, at last, we have a scientifically-grounded
vocabulary in which to express such matters precisely.
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The central concept of computational psychology, and
of artificial intelligence too, is representation. This
concept enables us to ask questions about the meanings
embodied in psychological systems, and the ways in
which they mediate thought and action. Certainly,
many more computational concepts (and advances in
neuroscience, t00) will be required before we have an
adequate scientific account of the human mind. But to
dismiss computational psychology as philosophically
bogus because of its many current shortcomings would
be like & seventeenth-century philosopher rejecting
Galileo’s suggestion that ‘mathematics is the language
of God’ because—having no differential equations —
he could not explain fluid dynamics.

Sometimes, to be sure, a scientific explanation of
behaviour destroys our previous valuation of it. For
example, someone might praise the ‘intelligence’ of the
hoverfly, which is able to meet its mate in mid-air. They
might assume that it can decide where it wants to get
to, and purposefully weave and duck on its way, much
as a person can intercept a friend in a crowded square.
But this would be a sentimental illusion.

It turns out that the explanation of the fly’s
behaviour is a mechanism hardwired in the brain,
which connects a specific visual signal with a specific
muscular response. The flight-path depends strictly on
the approach-angle subtended by the target-fly, and it
allows of no vanation once it has begun. On
discovering this simple trigger-effect, the sentimentalist
will be cruelly disillusioned. The hoverfly’s ‘intelligence’
has been demystified with a vengeance.

This loss of respect for the hoverfly’s intellectual
powers is due to the discovery that the fly’s ‘mind’ is
much less complex than had been thought. But
computational research shows that the human mind is
much more rich than psychologists previously believed.
Even Freud, whose writings were informed by a subtle
‘literary’ intuition, did not fully realize its complexity.

In sum, a computational science of creativity is not
dehumanizing. It does not threaten our self-respect by
showing us to be mere machines, for some machines are
much less ‘mere’ than others. It can allow that creativity
is a marvel, despite denying that it is a mystery.*

*The arguments in this paper are more fully explored sn M. A. Boden,
The Creative Mind: Myths and Mechanisms, Weidenfeld & Nicolson,
London, 1990; paperback (expanded): Cardinal, 1992
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