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well as the strain associated with cage distortions are
impaortant factors in the reduction of Cg,. The simple
evplanation offered earlier’ for the structure of CyoHiq
was based on the consideration that 36 is the number of
hvdrogens required to leave a single unconjugated
double bond in each pentagon of Cgy. We feel that it is
not unrcasonable to postulate a structure of CoyH;, as
one with four tetrahedrally disposed benzene rings. It is
possible that a structure with 1selated double bonds first
formed transforins to the thermodynamically more stable
structure with the benzenoid rings via sigmatropic shifts.
Thus with the four symmetrically spaced benzene units
tn the spheroid, the shape of the cage permits an
effective elimination of angle strain at both the sp* and
spicarbon atoms. The overall angular distortions are
marginally bigher for the T isomer than the T, form. It
appears that the aromatic character of the benzenoid
units 1s responsible for the greater stabilization of the
former isomer. [t 1s also likely that under conditions of
Birch reduction with terr-butanol as the proton source
only partial reduction of C¢y occurs leaving four hexa-
substituted benzene rings.
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Evolution of basin boundaries during
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The evolution of basin boundaries in a system with
multiple attractors is analysed numerically as the
system develops period doublings, crises and tangles.
The disappearance of the basin of attraction of a
chaotic attractor during a boundary crisis as well as
the erosion of the bounded basin by the escaping
basin due to a heteroclinic tangle are displayed in a
series of basin portraits.

IN the study of nonlinear systems, we often come agross
systems with multiple attractors, 1.e. with more than one
asymptotically stable states coexisting for one particular
set of system parameters. In such cases, each attractor
will be having its own separate basin ot attraction, the
basin being the set of initial points that lead to the
attractor as time { — 00. The boundary of the closure of
this region can in general be smooth or fractal. As the
attractor undergoes a bifurcation, the basin boundary
evolves, either going from a smooth to a fractal or
disappearing. Therefore, studies related to the location
as well as the nature of these boundaries and their
changes as the system parameters evolve have signi-
ficance because of their implications in the onset of
chaos in the system!-4. An ¢ priori knowledge about
how the attractor basins evolve can be of use when we
address the question of control mechantsms too, since
suitable control is normally applied to bring the system
within the basin of a periodic attractor’. So, also the
extent of basin erosion due to forcing can tell us how far
a system has chances of rematning constrained in a
noisy environment, and this s a useful criterion tn
engineering and applied sciences® 7.

In this communication, a detailed display of the
evolution of basin boundaries of a system with multiple
attractors 1s presented. By concentrating on parameter
regimes where interesting phenomena like crises and
tangles occur, we study numerically the reorganization
of the basin structure as the parameters pass through
their critical values. In this context, we note that basin
boundary analysis has been carried out extensively m
discrete dynamical systems® 9 The attractor-basin
portraits have been explored in detail recently by Ueda'!
for the Duffing equation, while Thompson et af.'>'3
have analysed basin organization prior to escape in a
single-well or double-well oscillator,

*On leave from Department of Physics, Maharaja’s College, Cochin
682 011, india

CURRENT SCIENCE, VOL 63, NQO 11, 19 DECEMBER 1993



RESEARCH COMMUNICATIONS

The system we have chosen serves as an ideal model
for Josephson tunnel junctions. Moreover, it represents
the dynamics of a quadratically damped driven pendu-
lum. The governing equation is

X+ k|x|x+sin x = A sin ©¢. ()]

Here x is the dependent variable and a dot above it
indicates differentiation with respect to tme ¢ The
coefficient & gives the damping constant while 4 and @
are the amplitude and frequency of the sinusoidal
driving force. This system exhibits a rich dynamics as it
is made to drift along the parameter space spanned by £,
Aand w.

A detailed numerical analysis carried out by us
earlier'®- 17 throws light on the possible stable periodic
modes and their bifurcations to chaos as the forcing
amplitude A4 is tned. Here in our discussion we
consider the specific case of 4= 0.1 and concentrate on
the basin of artraction of periodic modes of the oscil-
latory type that occur inside the potential wells of the
system. For such modes, x averaged over a period is
zero or {x)=0. However, the system in (1) has a series
of potential wells centred around the equilibrium points
at (2nm, 0), with n =0, 1, 2, ... Since our analysis is
mainly on the section of phase space covering the
central potential well around (0, 0). the bounded basin
considered 1s that of oscillatory modes around (0. 0).
The escape from the well normally leads to rotational
modes, which in this particular case may settle down
asymptotically to oscillatory modes in other neigh-
bouring wells or to cross-well oscillations as well as
chaotic attractors. The pattern of basin changes in each
well should be the same but when the central well is
under consideration, the basins of attractors in other
wells form part of the escaping basin.

When there is no -external forcing, ie. 4 =0, the
system has stable fixed points (or centres) at (2nm. 0)
and - unstable ones or saddles at ((2»# + 1)z, 0), with
n=0,11,42, ... The stable manifolds W5 of the
unstable fixed points at (@, 0) and (-, 0) form the
boundary between the bounded basin and the escaping
basin for the central well, while the upper part of the
unstable manifold W, from (-=, 0) and the lower part
Wg from (n, 0) approach asymptotically the attractor at
(0, 0). For small values of the forcing amplitude A, the
fixed point (0, 0) develops into a small stable limit cycle
8, with the basin boundary remaining practically
unaffected. As A is increased. W' from the left saddle L
and Wg' from the right saddle R reorganize themselves
and may touch Wi of R and Wi of L, resulting in
a heteroclinic tangency. The value of 4 =4y at

which this occurs can be computed using Melnikov
analysis'®:

Ay =1 A~ 2k cosh (4 1) @
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As A is increased beyond Ay, the stable and unstable
manifolds accumulate on each other. resulting in a
fractal basin boundary. This is referred to as a
heteroclinic tangle in the literature’*. Then we have

WR(LYNWE(R) 2 D
W (R)NW3(L) # D (3)

Near the tangle. the system develops a sensitivity to
initial conditions, as two nearby points may end up in
two widely separated potential wells. The situation,
though not exactly chaotic m the strict sense of the
word, results in longlived chaotic transients and has
been observed in other similar systems!?.

In the present work. fourth-order Runge-Kuita-Gills
scheme is used to integrate (1) and since the emphasis is
on identifying the asymptotic state and no quantitative
measures are computed, the step size chosen is 1/30th of
the drive period. The periodic modes S are searched for
to fulfil the conditions

x(Znn1)=X(0)
©

and

x(ﬂ) = %(0). *
w

h A

Figure 1. of basin during the onset of &
reverse boundary crisis. With & = 0.1 and « - 03, we study the
basing for A= 0.2, 0.5. 0.8, 1 0, 1 { he last figure 1s tahen beyond
the erisis point. See text for details regarding the colour

¥



RESLARCH COMMUNICATIONS

Moreovar, for oscillatory modes in the central well,
3 =0 and ®<x(5,) <n. The window of phase
space considered is 0 < x < § and ~3<x<3. The inte-
grations are repeated for a 81 x 61 grid of initial condi-
tions and the asymptotic states identified after 100 drive
cyveles The initial points are then given suitable colours
to distinguish the escaping and nonescaping basins.

Our results indicate that for @ < 0.5, the mode excited
is a stable nonresonant one, S, with m = }. Thus, with
w = 0.3 and 4 = 0.2, Figure 1 a gives the bounded basin
corresponding to S, in red colour while the yellow
regions form the escaping basin belonging to attractors
in other wells. The Meinikov threshold in this case is
Ay = 0.2225 Beyond this, as we increase A values to
0.5 and 0.8, we find a reorganization of the basins
affecting mainly the escaping part. However, the
bounded basin of S,, suffers a progressive shrinking. Our
previous studies indicate that the attractor S, does not
undergo period-doubling bifurcation and the mechanism
of onset of chaos that occurs at A, = 1.017 is a reverse
boundary crisis!”. The chaotic attractor that exists for
4 > 4, collides with the saddle on the basin boundary,
resulting in the sudden disappearance of the attractor,
leaving only chaotic transients. So the course of events
as A is increased is S, — chaotic transients — chaos.
This is clear from Figure 1d and e, just before and after
crisis. The green regions in Figure 1d that belong to the
chaotic attractor arise due to longlived chaotic
transients.

For values of w lying in the range 0.5 <@ <09, a
periodic resonant mode S, is created along with a saddle
S via a saddle node bifurcation at 4 = 4, before the
Melnikov tangency occurs. The bounded basin is now
shared by S, and S, and we have a region of resonant
hysteresis. This is shown in Figure 24 for @ = 0.6 and
4=0.3. The blue colour indicates the newly created

a b

basin of S, which forms a part of the bounded basin. The
Melnikov threshold in this case is 4y, = 0.2955, and as 4
is increased beyond Ay, (Figure 2 4—¢), there is drastic
reorganization of the basin of S; due to the incursion of
its basin by escaping basins that belong to S, or S in
other wells. Before mass erosion of the basin starts, S,
undergoes a period-doubling bifurcation at Ap = 0.405
to an m = 2 oscillation and the sequence accumulates at
A =0.407. The resulting chaotic attractor disappears!8
via a boundary crisis at 4 = 0.411. Beyond this point,
for A =042 (Figure 2f) we have only the bounded
basin of S, and the escaping basin shared by the chaotic
attractor and attractors in other wells.

If we consider frequencies w > 0.7, before the period-
doubling bifurcation of S, occurs at Ag, the nonresonant
mode S, disappears in a collision with the saddle § at
A = A, and so the bounded basin thereafter is that of S,
alone'®. Above the Melnikov tangency, long finger-like
structures of the escaping basin start penetrating the
resonant bounded basin, and as 4 is increased further,
massive erosion of the whole of the bounded basin
occurs. These events are shown in Figure 3, where
w=0.8 and A is increased as 4 =0.2, 0.35, 0.45, 0.5,
0.55, 0.6, and 0.7 The threshold Ay, in this case works
out to be 0.3796. Here we also try to display separately
the contribution to the escaping basin from the attractors
in the different wells, by giving different shades to each
one. The bounded basin in the central well is coloured
yellow, while the parts of the escaping basin due to
attractors in the successive wells on the right are
coloured green, violet, red and blue. respectively, with
brighter shades of the same colours indicating wells on
the left. The white regions correspond to attractors that
ultimately escape to rotational modes or chaos. In
Figures 3a and b. where 4 < Ay. the boundaries are
smooth, while in Figure 3¢ for 4> Ay, the fractal

c

Figure 2. The boundary separating basins of resonant and nonresonant modes inside the central well, for k= 0.1 and @ = 0.6 and A-values
ncrease as 0.3, 0.32, 0.34, 0.38, 0.4 and 0.42. Other rclevant details are included in the text.
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[4

Figure 3. Evolution of the basins of resonant modes inside ditferent wells during the development of a heterochimic tangle Here k = 0 [ and @
= 0.8. The A-values change sequentially as 0.2, 0.35, 0.45, 0.5, 0.55. 0.6 and 0.7. For a discussion of the colour scheme used. see text

nature starts forming. Figures 3 d—g indicate the erosion
of the bounded basin by finger-like structures as the
heteroclinic tangle develops. Our previous analysis!?
shows that S, period doubles at Ag = 0.95 and becomes
chaotic at 4 = 1.02.

In conclusion, we would like to remark that earlier
studies on fractal basin boundaries in pendulum systems
relate to the linearly damped case and that too for the
frequency-locked rotational modes?®-2!. There it has
been observed that as the rotational modes period-
double and approach chaos via an interior crisis, their
basins develop fractal boundaries and finally merge
together. The fractal structure of the boundaries
separating basins of fixed points inside the various wells
in a transiently driven pendulum has been studied by
Varghese and Thorp?2. In the present work, we discuss
the evolution of the bounded basin inside the central
well of a sinusoidally driven pendulum with quadratic
damping. Our results for higher frequencies broadly
resemble those reported by Soliman and Thompson?? for
periodically driven and linearly damped nonlinear
oseillators. We extend the analysis to other frequency
Tegions to include situations where the resonant attractor
period doubles before massive erosion of the basin
starts. 8o, also for lower frequencies the reorganization
of the basin due to the tangle affects only the escaping
bazin end the nonresonant bounded basin suffers only a

sive shrinking as the attractor approsches chaos
84 reverse boundary crisis.
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Rotifers — pollution or productivity
indicators?
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In order to test whether rotifers are most efficient as
pollution or productivity indicators, impact of abio-
tic parameters and primary productivity on abun-
dance of rotifers was studied. Population of rotifers
was found to be more in polluted zone with numeri-
cal superiority of Brachionus rubens and Brachionus
angularis. Different inter-correlations were estima-
ted and from multiple regression analysis it was
observed that rotifers were influenced most by
chloride, which is an index of pollution.

ROTIFERS as component of zooplankton are widely
distributed, Since they are very sensitive to ambient
ecosystem, they are used as bio-indicators in monitoring
poliution?-7 and productivity®#2. To ascertain whether
rotifers are bio-indicators more of pollution or producti-
vity, we have investigated the inter-relations of abiotic
parameters including chloride (pollution indicator) and
primary productivity on abundance of rotifers.

The study was conducted during September 1979 and
February 1982 at clean and polluted sites of river Ganga

at Bhagalpur (25°14° N; 86°57° E)¢". llydrobiological
samples were collected at monthly intervals and were
subsequently analysed. Data on temperature, pll,
dissolved oxygen. total alkalinity, dissolved organic mater,
chioride. primary productivity and rotiters from both
zones were pooled together and analysed for estimating
different inter-correlations. The data were also subject
to multiple regression analysis.

Out of 22 taxa of rotifers available in this stretch.
cight rotifers, viz. Keratella tropica, Brachionus calyci-

florus, B Jorficula, B. falcatus, B. caudatus, Anttra-

eopsis  fissa, Polvarthra ehrenburg and  Filima
terminalis, were found both in clean and polluted zones.
They seem to be tolerant to wide fluctuations of abiotic
parameters and hence they are being used as indicators
of both polluted and productive waters. The remaining
14, viz. Brachionus rubens, B angularts, B bakeri, B
urceolarts, Lepadelia ovalis, Platiyas patulus, Porales
sp , Rotaria rotatoria, Asplanchna brightwell, Horaella
brebmy,  Filinia longispina, F. opolicnsis, Lecane
ohiensis and AMytifina ventralis were <onfined to
polluted zone. Amongst them B rubens and B angu-
laris occur in swarms. A shift in species composttion of
rotifers from clean to polluted zones was apparent.

Inter-relations of abiotic parameters and primary
productivity on abundance of rotifers are given in Table
. The correlation analysis showed that correlation
coefficients of rotifers with water temperature (r = 0 393),
chloride (= 0.304) and primary productivity (» = 0.296)
were statistically significant at 5% level. From multiple
regression analysis (with logarithmic transforrmation}, it
was observed that the effect of chloride on rotifers was
statistically significant at 5% level. Multiple regression
fitted to the observed data was:

log Y =—-7.146+1.438 log X, + 13961log X, +0236l0g .G
(1 037) (0 278) (0 183)
(n=351. £ =0.47)
where X, X5, X5 and VY represent water temperature,

chloride, primary productivity and rotifers respectively
Figures within parenthesis indicate the standard errvor of
the respective regression coefficients.

From the estimates of standard partial regression
coefficients!? it was observed that abundance of roufers
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Table 1 Corrclation matrix

Temp pH DO T Alk DOM ClI Ggr Rotf
Temp 1 0OO* 0 083 —0 154 0 061 — 320" 0 090 D343 0 308>
pH 0 083 1 00O* 0 075 0024 —0 147 0 208 0232 0 197
PO -0 164 0075 1 Q00* —0.460* ~0 208 ~0 614" -0 356* -0 255
T Alk 0061 0024 -~ 460* | DOO* 0 368* 0 642+ G 296* ¢ 037
DOM —0 320* -0 147 -0 208 0 368* 1 000* 0331* 0178 —{) 066
Cig 090 0208 -0 614 0 642* 331" 1 000~ 0 542* 0 304*
GP 0 345+ 0232 ~0) 356* 0 296¥* 0178 0 542* 1 000* 0 206*
Rouf 0197 -0 255 ~0 66 ) 304+ 0 296" | 000*

0 398>

0 037

i

* Indicate significance at 8% level,

L

—

CURRENT SCIENCE, vOL 65, NO 11, 10 DFCEMBER 1995



