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Mathematics as a basic science

Michael Atiyah

1T is' a great honour and pleasure for me to deliver the
first Rajiv Gandhi Science Lecture, particularly 1n the
presence of His Excellency the Governor of Karnataka
and of Mrs Sonia Gandhi.

As President of the Royal Society, which numbers
many distinguished Indian scientists among 1ts Fellows,
[ am delighted to be here addressing an audience with an
interest in science. Rajiv Gandhi, like his grandfather
Jawaharlal Nehru, was a strong supporter of science and
both of these Prime Ministers of India studied at my
college in Cambridge. This gave me an added reason for
accepting your kind rvitation.

We all know the fundamental role that science plays in
our lives. It underpins everything in modern society;
engineering, medicine even agriculture are now built on
scientific foundatians and this process is accelerating,
Two of the most dramatic examples are provided by the
computer revolution of the past decades, based on the
incredible miniaturization of components, and the dawn
of molecular genetics based on the understanding and
manipulation of DNA,

The whole scene 1s both daunting and bewildering; it
is beyond the grasp of any one person to appreciate fully
what is happening. But there are two key points which
should be stressed. The first is the essential unity of
science. No part of science, however specialized, thrives
in solation. Techniques and ideas from one field over-
flow 1nto quite different areas. For example, our under-
standing of molecular genetics would have been
impossible without the use of X-ray crystallography,
essentially a technique based on physics and developed
by chemists. Moreover interpreting the data that
crysiallographers observe requires some sophisticated
mathematics. Finally the vast amount of data could not
be handled without the incredible power and speed of
modern computers.

Modern science is a massive and complex structure of
Interconnecting parts. Moreover, the links are frequently
unexpected and unpredictable.

The second important point is the relation between
basic science and applied science. Much effort has gone
into trying to define these two terms and to introduce
intermediate categories such as “strategic science’, but [
will not enter here into these subtleties. We can broadly
define the aims of scientists as that of understanding the
natural world (in the broadest sense) and of using that
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understanding for the benefit of mankind. Knowledge
and use are the dual objectives. Some parts of science
are, at any given moment, of more immediate use than
others but, taking the longer view, there is no such thing
as useless science.

In any structure some components are nearer the
foundation and some are nearer the roof. In a literal
sense basic science refers to those parts of science
which support the superstructure. In that sense one can
reasonably argue that mathematics is the most basic of
the sciences. Because of its antiquity and its logical
nature mathematics 1s, in varying degrees, indispensable
to all the sciences. It provides the framework and
language in which much of science is formulated. It
provides precision and clarity, enabling other scientists
to establish laws and deduce consequences.

Let me give a few illustrations which demonstrate the
wide range over which mathematics operates, and the
unexpected ways in which it can become applied.

Perhaps the oldest and deepest applications of
mathematics relate to physics, from Newton’s time
onwards. The laws of electricity and magnetism provide
an impressive example. Based on the experimental work
of Faraday, Clerk Maxwell in 1865 formulated the
mathematical equations which now bear his name. These
equations describe in a compact form the inter-relation
between electricity and magnetism. They led in due
course to the discovery of radio waves and they also
encompass the theory of light. No mathematical equat-
ion has ever had greater practical importance. We might
justifiably say that modern society has this equation as
its foundation stone.

] have already mentioned the role of mathematics in
crystallography. Here the relevant mathematics was
developed by the French mathematician Fourier in the
early 19th century, in connection with the study of heat.
It has proved fundamental 1n all branches of physics
involving the study of waves as in water, light or sound.
A somewhat analogous but more recent story involves
the development of the CAT scanner. This involves the
us¢ of X-rays in medical practice to locate the 3-dimen-
sional position and density of objects in the human
body. One set of X-rays gives only a 2-dimensional
projection but, by using X-rays in different directions,
more information is obtained and one would like to
reconstruct a fully 3-dimensional picture from a number
of 2-dimensional ones. Fortunately, the mathematics
of this has been studied, purely for its own sake, by
Radon several decades earlier and an ¢legant solution
had been obtained which could now unexpectedly be put
10 use.
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I have referrcd to the computer revolution, one of the
stemficant technological events of our tune. In {act, the
carly pioncers in computing, such as Babbage in the
19th centwry, Turing and Von Neumann in the 20th
century, were all mathematicians. There is an obvious
analogy betwcen the logical steps of a mathematical
argument and the operation of digital computers. Mathe-
matical logic was once regarded as the most abstruse
branch of mathematics, more akin to philosophy, as in
the work of Bertrand Russell. Now students with Ph D.’s
in logic are snapped up by computer companies to help
them design the software of the future.

Another example of totally uneapected applications of
pure mathemalics is provided by the recent use of prume
numbers in the construction of codes. Anyone can see at
a glance that 15 is 5 times 3 but factorizing a number of
say 50 digits is a different maiter, particularly if its
prime factors are themselves large. Neither theory nor
computers are of much help and so, based on this fact,
one can construct simple unbreakable codes.

Users of such codes include banks and other financial
institutions so that, 1f utility is measured in pounds,
prime numbers are certainly being put to profitable use,

The famous British mathematician G H. Hardy gloried
i the fact that the theory of Nummbers, his own specialty.
would never be put to practical use. He must be turning
in his grave.

Number Theory for its own sake, as a great intellectual
challenge has a long history, partucularly here in India.
Already in the 7th century Brabmagupta made important
contributions to what is now known (incorrectly) as
Pell’s Equation.

This equation is of the simple form

1—2 — NJ": — .

where N is an integer. The difficulty i1s that we require
the unknowns x and y also 10 be integers.

For example when N =2 it is easy to find the solution
x=3,y=2. But for N=061 1t turns out that the smallest
solution 1s

x = 1766319049
y=226153980

indicating the unexpccted difficulty of the problem.

More recently, of course, and linked to G. H. llardy,
was the remarkable case of Ramanujan, a self-taught
senius who produced profound results by myste-
rious methods. Ramanujan contribuled to many aspects
of the Theory of Numbers, but he was specially fond ol
infinite  serics with remarkable arithimmctic properties.
There 1s. {or example, the function pamed atter him
which enumerates the cocefficients ol a certain inlinife
product:

x (1=x) (1 - 2™ (1= x).
= - 24T 4 2520 - 14720 1 483040 L
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Ramanujan was rightly fascinated by these large inte-
resting integers and he made remarkable predictions
about them which have subsequently been verified.

This year number theory happened to hit the headlines
and found its way on to the front pages of newspapers
all round the world. I am referring to the solution of
‘Fermat’s Last Theorem’, which was announced by
Andrew Wiles at a lecture in Cambnidge last June. This
finally solved the most famous problem m mathematics
—a problem formulated by Fermat over 300 years ago
and which has resisted the efforts of the best mathe-
maticians over the intervening centuries.

Popular interest in this story was enhanced by two
additional facts. Fust, the problem s very simple to
state, so that it can be understood by the man in the
street. Second, Fermat wrote in the margin of his book a
cryplic note saying that he had discovered a marvellous
proof but the margin was too small to writc it down.

Andrew Wiles
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Pierre de Fermat

This remark has bemused and perhaps irritated his
successors but it has added to the fame of the problem.

There are also other factors which make Fermat's Last
Theorem of special interest to the President of the Royal
Socety.

Fermat was by profession a lawyer, working in the
south of France, but mathematics was lus consuming
interest. He corresponded with some of the leading
scholars in Europe. As was customary at the time, he
would pose problems and issue an open challenge to
am one to produce solutions.

In fact, one of the problems asked for a general
method to solve Pell’s equation, a problem which unbe-
known 1o his contemporaries had, as 1 have already
mentioned, been studied and essentially solved by
[ndian Mathematicians many centuries earlier.

Among those who sparred with Fermat, responding to
his chalienges, were two of the leading English mathe-
maticians of the time, John Walhis and Viscount
Brouncher. Brouncker subsequently became the first
President of the Royal Society; so it seems appropriate
that 330 years later, when a mathematician 1s again
President of the Society, you should hear the end of the
story.

You will be relieved to hear that I will spare you the
technical details Fortunately, they require more exper-
tise than I possess. However, | would like to deal with
the problent on a grand scale, indicating how it has been
linked with the major events of the past 300 years. It is a
story which contains many lessons relevant to our time
and to fields other than mathematics, emphasizing the
unexpected way in which science develops and the
intricate intecrconnection of its component parts. In a
spectacular way it exemplifies the long time-scales that
may be necded.

The problem starts with the well-known observation
that there are right-angled triangles whose sides (in

Yid

Viscount Brouncker

some unit of measurement) have integer lengths. The
best known example is the (3, 4. 5) tniangle and the next
s (5, 12, 13). By the famous theorem of Pythagoras the
sides (a, b, ¢) of such a triangle have to satisfy the
equation

at+ b= ¢l

It was already known to the Greeks that there were
infinitely many integer solutions to this equation and so
imfinitely many right-angled triangles with integer sides.
If p, g are any integers, a little elementary algebra shows
that

a=p’—¢q’, b=2pq, c=p’+q’

provide solutions of the Pythagorean equation. Fermat
asked:. What happens if we replace squares by cubes? In

other words, can we find positive integer solutions of
the equation

a+ b=t

More generally, he asked the same question for an
arbitrary integer exponent n. Does the equation

ﬂﬂ + bﬂ - C"

have any positive integer solutions (a. b, ¢)? His ‘Last
Theorem’ asserts that, for # greater than 2, the answer
is$ no.
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In the 17th, 18th and 19th centuries this problem
attracted the attention of the most famous mathe-
maticians, spurred on no doubt by prizes offered by the

French Academy. For n =4, a proof essentially that of

Fermat himself, was published in 1676. A century later
Euler disposed of the more difficult case » =3. By 1840
Legendre and Dirichlet had dealt with n=35 and n=17,
The proofs of these special cases depended In part on
the solution of Pell’s equation and this related 1t to
Fermat’s other interests.

A little later, Kummer claimed to have a general proof

for all exponents. Unfortunately, although Kummer’s
proof was a great step forward, there was a subtle
fallacy in the argument. Analysing this error (and prov-
ing Fermat's Theorem for many values of » all at once)
opened up a vast new field, and led Kummer to develop
deep new ideas which have had widespread impact on
many branches of mathematics. Kummer’s error is quite
easy to explain. We all know that ordinary integers can
be factorized into prime factors (e.g. 24 = 2 x3).
Moreover, this factorization 1s unique, an apparently
rather obvious fact which is not usually stressed. There
are ‘generalized integers’ which share similar proper-
ties: e.g. expressions a+&#v/2 with a, b ordinary
integers or a+ b+/~1. These last occur naturally in
connection with the Pythagorean equation (n=2)
because of the identity

@’ + b2 = (a+b V-1 (afb\/—l).

Perhaps at this stage 1 should comment on /-1 and
‘imaginary numbers’. When these were first introduced,
purely formally, as in the above equation, there was
much controversy over their real meaning.” But, as
mathematics evolved, the utility of imaginary numbers
was increasingly recognized. They are a great help in
connection with Fourier’s theory, mentioned earlier, and

are now extensively used by electrical engineers. If

immediate practical use had been a criterion at the time,
reaearch on imaginary numbers would certainly not have
been funded!

Returning to our ‘generalized integers’, Kummer
assumed implicitly that their factorization into prime
factors was always unique. This turns out to be a subtle
property, sometimes true and sometimes false, depend-
ing on the class of integers. For example, it is false for
expressions a + /=5 with a, b ordinary integers.

Kummer’s brave and fruitful, if inconclusive, attempt

was rewarded by the French Academy with a prize of

3000 francs. In 1908 the Academy in Gottingen received
a private benefaction offering a prize of 100,000
Deutschemark for a general solution of the Fermat
problem. Recognizing its difficulty, the offer had a
generous time himit: solutions had to be received by 13
September 2007,

Despite these incentives, there has been, until this
year, no fundamental progress, although computer
calculations had, through a combination of theory and
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brute force, disposed of more and more values of the
exponent n. Needless to say, the apparent simplicity of
Fermat’s Theorem has attracted hordes of amateurs who
delude themselves into thinking that they have found a
proof. There must now be enough false proofs to fifl a
library.

The Fermat equation is, of course, a very special
equation, and however beautiful and fascinating it may
be, mathematicians like to understand things in greater
generality. We can obviously consider more complicated
equations and ask for integer selutions. This branch of
the Theory of Numbers is called Diophantine (after the
Greek mathematician Diophantus), and Fermat and
Kummer are two of the principal figures in its recent
history.

Of course, an equation can be viewed as defining a
curve. For example, replacing a/c and b/c by x and y In
the Pythagorean equation, we recognize the usual
equation of a circle

xt+ =1,

Integer triples (a, b, ¢) now correspond to points on the
circle with rational fraction ccordinates (x, y): we call
them rational points. Of course, as known to the Greeks,
not all numbers are rational (fractions). For example,
J2=1.414 ... can only be represented by an infinite
(non-recurrent) decimal.

The geometric point of view is a powerful one and,
over the past century, there has been much progress in
looking for ‘rational points’ on algebraic curves, It turns
out that there is a crude, but fundamental, labelling of
curves by an integer called the genus g {for Fermat
curves this is related to the exponent n). If g=0 the
answer is easy: if there is one rational point there are
infinitely many and there is a simple rule to describe
them all (as with the Fermat curve for n=2). If g = 2
rational points are rare and a famous conjecture of
Mordell proved a few yvears ago by Faltings asserts that
the number of rational points is always finite. This
includes all Fermat curves with » = 4 and is a step on
the road to showing that the number is actually zero.

The case g =1 (corresponding to the Fermat curve
with » = 3) is the most interesting and such curves are
called elliptic, being related to elliptic functions. Here
the numbers of rativnal points may be finite or nfinite.
They have an intricate structure but they are very
difficult to find and enumerate. As a result, a great deal
of effort by algebraic geometers and number theorists
has been devoted to elliptic curves. Some remarhable
conjectures of Birch and Swinnerton-Dyer in 1960,
concerning rational points on elliptic curves, have been
central to research since that time and may, in du¢
course, acquire a status comparable to Fermat's
Theorem.

Now curves can be described in two complementary
ways, either by an cquation or by a parametrization. For
example the curve whaose equation s
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Sometimes a point corresponds to a unique value of
the parameter (as with this example) but in other cases
many values of 7 may yield the same point, i.e. there is
some redundancy in the parametrization. For example, if
we used a thread round a circle (of unit length) then ¢
and ¢+ 2 {(with n an integer) give the same point. A
more complicated example arises when the parameter ¢
and

£ =(ct+ BY(ye+ &)

with «x, B. y, & integers, might define the same point.
The transformation from ¢ to 1" is called modular and a
curve with a modular parametrization is called a
modular curve. It turns out that modular curves are
much easier to understand and, as you might expect, a
lot 1s known about rational points on them. In particular
this holds for elliptic modular curves.

Let me digress for a moment to talk a bit about
modular transformations. These turn up in many parts of
mathematics and they have some fascinating geometry
attached to them. This 1s best illustrated by one of
Escher’s pictures, which also tllustrates with artistic
licence the aesthetic component in mathematics. The
modular transformations are symmetries of the picture,
they move each ‘cell’ on to another one.

The fact that cells near the boundary look smaller than
those near the centre is a distortion analogous to the
familiar distoriron 1n geographical maps. in which the

Angel-Dewvil {(Escher)
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arctic and antarctic regions are unduly magnified.
Notice however that the distortion in the Escher picture
has the opposite effect of shrinking, rather than expand-
ing, as we move to the outer region. In fact Escher’s
picture is @ model of the hyperbolic or non-Euclidean
plane and incidentally is also closely related to imagi-
nary numbers. The discovery that there were other
oceometries besides that of Euclid (in which the angles of
a triangle need not add up to 180°) was one of the major
events in mathematical history. In turn 1t led to more
oeneral curved geometries of the type which were ulti-
mately used by Einstein in his theory of General Relati-
vity. So modular transformations ar¢e firmly embedded in
the history of mathematics and physics. Moreover mo-
dular transformations and their number-theoretical im-
plicanons lie behind much of Ramanujan’s work and in
particular are the key to the Ramanujan function.

Number theorists therefore had two classes of elliptic
curves before them. Those given by equations which
were difficult to study and those which were modular
and better understood. Wouldn’t it be wonderful, they
said, if all elliptic curves (given by any equation) were
in fact modular? This apparently naive idea was first put
forward, about 40 years ago, by the Japanese mathe-
matician Taniyama. It was subsequently refined and
shown not to be so naive by many other mathemati-
cians. In fact it was shown to fit into a very general
theory put forward by Robert Langlands. This Lang-
lands® programme has al! the same ingredients: sym-
metry, equations, rational points, but now in a much
more comprehensive framework.

Let me just say a few words about symmetry. The
study of symmetry in mathematics began in fact with the
pioneering work of the young French mathematician
Galois (who died in a duel at the age of 21). Galois was
studying the symmetry in solutions of equations: for
example the symmetry between ++/2 and —+/2 as
solutions of x2 =2. I have already mentioned geometric
symmetries as in non-Euclidean geometry. In general,
svimmetry provides one of the unifying and simplifying
features throughout mathematics. It also permeates
physics, from the symmetries of crystals (a subject
tamiliar to the great Indian scientist C. V. Raman, whose
muscum ] visited today) to the symmetries of relativity
theory and fundamental particles. We now understand
that the basic conservation laws of energy, momenturn
or electric charge are all manifestations of underlying
symmetries. Digging deeper into the nature of matter
now involves a constant search for *hidden’ symmetries.

Moreover, the Langlands’ programme borrows some
of its key concepts from that of gquantum theory. You
micht think 1t highly implausible that physics should
have anything to contribute to the theory of numbers
But in fact quantum physics does deal with discrete
quantities, like energy levels, and there ate certamnly
situations in which enumerating integer solutions IS
related to quantum-mechanical problems.
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But I am straying from my point. | was just explaining
that, as part of rhe general Langlands programime, the
naive conjecture of Tantyama takes its natural place.

Andrew Wiles announced this suminer the general
truth of Taniyama’s conjecture that {almost) all elliptic
curves are modular. This is a very important thegrem
and typical of the thrust of contemporary mathematics
—to establish very general vesulis as part of a big
picture. Of course one hopes such general results will
have specific pay-ofts in various special cases but what,
you might ask, has this to do with Fermat's Last
Theorem which (for » 2 3) was not about elliptic curves
but appareatly about curves of higher genus?

The answer lies in a very clever observation by Frey,
put on a rigorous footing shortly afterwards by Ribet.
The observation went as follows: suppose we have a
solution, in positive integers, (a, b, ¢) of the Fermat
equation of exponent n. Consider the ellipric curve

y:=x{x—a" (x + b").

Surprisingly it turns out that one can show this curve is
rof modular.* This contradicts Tanivama’s conjecture
(now established by Wiles) and hence our hypothetical
solution of the Fermat equation cannot exist. In other
words Fermat’s Last Theorem has been proved

This last twist in the story carries a lesson for all of us
in mathematics or science, A direct onslaught on a
difficult problem may get stuck but, if we persevere with
a general mvestigation of refated matters, trying to under-
stand the fundamentals then, in due course, we may be able
to solve our earlier problem as an incidental by-product.

So a problem formulated before the foundation of the
Royal Society has finally been solved. At least we hope
so! Until a wmathematical proof of this degree of
sophistication has been completely writlen down and
subjected to critical examination it may still turn out to
contain crucial gaps. The example of Kummer provides
a warning but also some consolation. Even 1f Wiles’
proof turns out to be incomplete it will ceriainly have
shed new light on the problem and opened up further
doors. Perhaps a problem that constantly eludes us, but
stimulates new ideas and techniques is preferable to one
that can be finally disposed of.

Throughout these three centuries Fermat’s Last Theo-
rem has challenged mathematicians and has acted as a
test of mathematical technique and virtuosity. Wiles’
solution is an outcome of many theories that have been
built up since Fermat’s time. Totally new ingredients
such as symmetry, which | have mentioned, and topo-
logy, which I have not, have contributed to the whole
ftamework. Mathematicians now have extremely sophi-
sticated and relined tools at their disposal and all of
these are anvolved in the proof of the Fermat Theorem.

N ——
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* Al least for # an odd prme, but dus oy sufticient {or the Fermat
I heorem

You are all famifiar with the sophisticated apparatus that
experimental scientists now use: physicists, chemists
and biologists. These enable the modern scientist to
tackle questions that would be impossible to answer
with more primitive equipment. The situation in
mathematics is similar: we have a loi of elaborate
machinery but in our cas¢ it consists of pure theory:
ideas, technigues and formulae. You could call it
software, but that hardly does it justice.

From what 1 have said, you wil!l not be surprised to
know that most mathematicians believe that Fermat was
deluding himself when he made his cryptic claim in the
margin of hts book. He probably fell into a similar trap
to Kummer, or perhaps he thought about the first cases
of n =3, 4 and assumed the rest would follow. )t is, of
course, still possible that some young genius will come
along with a clever, new and direct proof of Fermat’s
Theorem — conceivably even one that Fermat could
understand. This would bre admirable and surprising, but
it would in no way replace the great edifice that modern
mathematics has erected and which Wiles has exploited.
The aim of mathematics is to develop general theories,
to provide understanding and unity — solving individual
problems, however elegant and historic, is incidental
and is merely a test of the genuine power and applic-
ability of the theory that has been developed.

In recounting this fascinating story 1 have tried to draw
out some of the lessons which are implicit in it on the
nature of scientific progress. The time-scale of 300
vears is unprecedented in modern times but it does
emphasize the virtues of patience. Many of the problems
we face will require decades if not centuries and we
cannot guarantee solutions tomorrow. 1 have also
indicated that Fermat’s Theorem eventually emerged
from a general framework of ideas that had roots n
many different parts of mathematics and physics. | am a
strong believer in the essential unity of science and
Fermat’s Theorem 1s a good ilfustration.

In this day of financial incentives, it is also salutory to
note that, despite handsome prizes being repeatedly off-
ered for the proof of Fermat’s Theorem, money played no
significant part in the end. The prize of 100,000 pre-World-
War-One Deutschemark is hardly a major inducement.

I like to reflect on what would have happened had
King Charles I, who founded the Royal Society, deci-
ded, perhaps on the advice of Viscount Brouncker, that
national prestice (or Anglo-Irench politics) required a
British solution of the Fermat problem. What Kind of
targeted research programme would the Royal Society
have been told to initiale? Perhaps Newton would have
been instructed not to waste his time on the ¢alculus but
1o concentrate on aleebra? A decade or so later, with no
progress to report, the Royal Socicty would have been
restructured and merged with the Mint, so as to give
Number Theorists a more practical bent. | leave the rest
lo your imaginationt

— - il
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