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Harish-Chandra began his research career working with
Homi Bhabha at the Indian Institute of Science,
Bangalore, on problems in theoretical physics. Soon
after, he went to Cambridge University in England, to be
guided by Paul Dirac towards a PhD> degree. Dirac
suggested that he Immvestigate the unitary irreducible
representations (UIRs) of the homogeneous Lorentz
group SO(3, 1) (and of its universal covering group
SI(2, ()). As it turned out, this work of Harish-Chandra
done under Dirac’s supervision pretty much determined
the major interests that he pursued throughout his life.
In this article I would like to describe this work in
perspective, and take the opportunity to recall some
personalities and events of half a century ago. It may
also not be out of place to indicate to younger readers
and aspirants today that there continues t0 bs a need and
room for heroes that we may admire and attempt to
emulate,
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The importance of the linear representations of the
groups SO(3, 1) and S/(2, C) in special relativistic
problems is well known. The superposition principle of
quantum mechanics, in the context of relativistic qua-
ntum mechanics and ficld theory, only enhances this
fact. Since these groups are noncompact, there is a great
difference between their finite and infinite dimensional
irreducible representations. Namely (always eacluding
the trivial one-dimensional representation) every finite
dimensional representation is necessarily nonunitary;
and every unitary representation is necessarily infinite
dimensional. Of course there can be (and there are)
infinite dimensional irreducible representations which
are nonunitary!,

These properties are in siriking contrast to the
situation with the three dimensional rotation group
SO(3), and its universal covering group SU(2), both of
which are compact and which are so important in the
quantum theory of angular momentum. Thus each
irreducible representation of SU(Z) is known to be both
tinite dimensional and unitary. These representations are
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labelled by the ‘spin value j° which can take values
j=0,1/2, 1, 3/2,... and are of dimension (25 + 1): for
half odd integral j we have genuinely spinorial
representations of SU(2) (also called double-valued
representations of SO(3)), while for integral j we have
the vector and tensor representations of SO(3) of various
ranks!,

The finite dimenstonal irreducible representations
(IRs) of the Lorentz group SQ(3) and of Si(2, C) are
quite familiar. They are the subject matter of spinor and
tensor analysis. Each such representation is labelled by a
pair of spin values, {j,, ;) say, and is of dimension
(2j; + 1) (2j; +1). These ‘quantum numbers’ j| and j2
can independently take on any value in the range 0, 1/2,
1, 3/2,.... If j, + j, is half odd integral we have basically
a spinorial representation of S/(2, C), otherwise an
S(3, 1) tensor of suitable type. Within an iR(/,, j,), the
spectrum of angular momentum values (i.e. UIRs of
SU(2) present) goes from the mimimum value
Jo =11 —j3] in steps of unity up to the maximum of
J1 + /j»; and each of these appears exactly once.

Here are some simple examples of these finite
dimensional ponunitary IRs. In special relativistic
mechanics and electrodynamics, the space-time position
four-vector, the energy-momentum four-vector and the
charge current density all belong to the IR (1/2, 1/2).
The ten-component energy momentum tensor of any
system belongs to the sum of the two IRs (1,1) and
(0,0), the latter being the trivial one dimensional or
scalar representation. The electromagnetic field
strengths belong to the sum of the two IRs (1,0) and
(0,1) — these correspond to the complex combinations E
+ iB of electric and magnetic field vectors. The Klein-
Gordon wave equation involves of course a scalar field
on space-time.

The first time spinor quantities entered into physics
was with Dirac’s discovery in 1928 of the relativistic
wave equation for the electron?. Written in modern
notation this reads

(-i¥"3, +m)y(x)=0. (1)

Here the 3# are certain 4 x4 matrices — the °Dirac
gammas’ — and  (x) is the Dirac wave function having
four components. It belongs to the reducible
represeniation (1/2,0) @ (0, 1/2) of S/(2,C). Even
though spinors were known within mathematics some-
what earlier, through the work of Elie Cartan, theit use
in physics came as a total surprise. Indeed Dirac has
recalled that Eddimgton could not believe there could be
nontensorial quantities at all, while von Neumann was
surprised that there could be four-component objects in
relativity which were not four-vectors! Soon after
Dirac’s discovery, Weyl constructed wave equations for
massless spin one half particles — neutrinos — using two-
component wave functions belonging 1o either the IR
(1/2, 0) or the IR (0, 1/2) alone’. Another slightly later
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example is the Rarita-Schwinger wave equation for
particles of spin 3/2, which was based on the
representations (1, 1/2), (i/2, 1), (1/2, 0) and (0, 1/2) al]
put togethert. In the thirties generally the study of
refativistic wave equations was quite an industry — and
later both Bhabha and Harish-Chandra were to contri-
bute to it too.

The detailed group-theoretic and algebraic properties
of the finite dimensional IRs of S/(2, C) were brilliantly
exploited by Wolfgang Pauli in his 1940 proof of the
spin-statistics theorem — integral (half odd integral) spin
particles must necessarily obey Bose (Fermi) statistics?,

Now let us turn to the story of the unitary
representations (URs). Probably the earliest occurrence
of these was in 1932 in a remarkable paper by the
talented [talian physicist Ettore Majorana®. At the time
of Majorana’s work the positron had not yet been
expertmentally discovered, and the negative energy
solutions of the Dirac equation {1) were felt to be ap
embarrassment. Therefore Majorana set out to devise a
relativistic wave equation which would completely
avoid negative energy solutions! He constructed two-
wave equations — the Majorana wave equattons — which
may be written, in the pattern of equation (1), as

(~il"8, +K)y (x)=0. (2)

[n contrast to equation (1), however, the wave-function
w{x) here has infinitely many components, and the
matrices I'y are infinite dimensional and hermitian. And
under a Lorentz transformation, y (x) changes according
to an infinite dimensional UIR of S/(2, C). The two
Majorana equations describe respectively particies of all
integral spins =0, 1, 2, ..., and of all half odd integral
spins j = 1/2, 3/2, 5/2, ..., once each; and the two UlRs
of S(2, C) concerned {which we shall identify later) are
very special indeed. Apart from these features, while y°
is indefinite, the hermitian I'? is positive definite — this
was the key to the avoidance of negative energy
solutions,

However these equiations of Majorana ran into several
problems;

1. the positron was soon discovered;

2. each equation describes a ‘tower’ of particles with
steadily increasing spin but decreasing mass, which is
unphysical, namely the mass spin relation was of the

form

S (3)
j+1/2

m(j)=

3. much later Valentine Bargmann’ poined out that the
equation (2) possesses solutions for space-hike encrgy
momenta (tachyons), and in this way negative
energies reappear,

For all these teasons, not much interest in Majorana’s
work remained, until Yoichiro Nambu i the tate 1960s
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resnved for a while the whole subject of infinite
component relativisiic wave cquations in the context of
the strong nicractions of efementary particlest., But
what remains remarkable s that as early as 1932
Majorana had constructed two (albeit rather special)
VIRs of SI2. C).

For many years afier Majorana’s work, there was no
svstematic study of the URs and UIRs of SO(3. 1) and
SH2.C) It was in 1945 that Dirac picked up this
problem again, and constructed a certain class of URs of
the Lorentz group. hoping that they might be used in
physical problems®. According to Dirac, his ideas were
inspired by the algebraic treatment of the harmonic
oscillator problem n quantum mechanics due to
Viadimir Fock. In his article on Harish-Chandra'®,
Lanciands quotes these sentences from the Dirac paper:
*“The Lorentz group 18 the group of linear
transformations of four real variables &, &, &, &; such

+

7 .. oL, . :
that £5-E7~E7-E5 is invariant. The finite represen-

tations of the group ... are all well known and are dealt
with by the usual tensor analysis and its extension spinor
analysis. None of them is unitary. The group has also
some infinite representations which are unitary. These
do not seem to have been studied much, in spite of their
possible tmportance for physical applications’, and
remarks that ‘This is as close as one comes to the source
of the theory of infinite dimensional representations of
semisimple and reductive groups...’.

A somewhat more detailed and technical account of
Dirac’s work {followed by Harish-Chandra’s) was
presented elsewhere!!. Here we [imit ourselves to a
qualitative outline. In essence Dirac’s tdea — something
uniquely his own -~ was to start from the finite
dimensional nonunitary symmetric lensor represen-
tations (j,j) of SO(3,1), well known from tensor
analysis, and analytically continue the rank of the tensor
to complex values until he arrived at infinite dimen-
sfonal wnitary representations. This iS in a sense liKe
‘lifting the lid” off the sequence of spin values @, [, 2,
..., 2f present in (J, /). and letting it run on to infinity.
The key step was to consider formal infinite series
expressions in the components of a four-vector, involv-
ing positive powers of the space components but
negative powers of the time component; and to regard
the coefficients of the terms in such expressions as the
components of a new kind of unitarily transtorming
object with respect to SO (3, 1).

The URs constructed by Dirac contained integral spins
alone, hence they were representations of SOQ3, 1)
They were also highly reducible. That is to say, Dirac’s
work was very far indced from determining UIRs of
SO(3, 1). He gave the name ‘expansors’ to infinite
component fields on space-time belonging to his URs of
S0(3, 1). He showed that they could be realized in a
rather simple fashion as follows. Consider complex-
valued square integrable functions ¢(x) on a ficti-

G3%

tious ‘space-time’ for which the Hilbert space norm
It @l and the action of Lorentz transformations A are
given by

Ii¢1|2=_[d¢xl¢(x)lzfzm,

AeSO(3,1):¢(x) =@ (x)=p(A x). (4)

That one has a representation here. and that it is unitary.
are both trivial observations. (Realize that the *wave
function’ ¢ here is a scalar, i.e. it is a single-component
object, and it is nor subject to any equation of motion or
wave equation.) Dirac showed that his expansor UR, in
the simplest case, was just the UR(4), described tn a
particular way by introducing & Fock-like basis for
harmonic osciflators with respect to the four variables
x#. In spite of this ‘tniviality’ of the expansor UR,
Dirac’s work was important in that he directed attention
to a neglected problem, and took the first steps towards

its solution.
At this point the story shifts to India. Harish-Chandra

completed his M Sc in physics at Allahabad University
during 1941-43. Here he grew very close to Professor
K. S. Krishnan, and obtained much encouragement from
him He also studied Dirac’s ‘Principles of Quantum
Mechanics' and as he later said this *... prompted in me
a strong desire to devote my life to theoretical physics’!
After the M Sc, at Krishnan's urging, he moved to the
Indian [nstitute of Scieace at Bangalore, with the idea of
working in the physics school established by C. V.
Raman, and more particularly with Homi J. Bhabha.

Bhabha had been a student of Dirac’s in Cambridge
the thirties, (though he obtained his Ph D under R. H.
Fowler) and after some time spent at various centres in
Europe he came back to India in 1939 for a holiday.
However, due to the outbreak of war, he could not
return to Europe and so decided to stay on in India. In
1940 Raman offered him a special Readership In
Theoretical Physics at the Indian fastitute of Science
Bhabha worked at the Institute up to 1943, then moved
on to Bombay where he set up the Tata Institute of
Fundamenta! Research and then the Atomic Enorgy
Establishment at Trombay. A not too well-known fact 1s
that the Tata Institute of Fundamental Research was
actually ‘born’ within the Indian Institute of Science at
Bangalare, ‘lived’ there for about six months, and was
then ‘carried’ to Bombay!

When Harish-Chandra first came 'to Bangalore he
stayed with the Kale family on the Institute campus. tle
had known them at Allahabad, from where Kale, a
botanist, had moved to the Institute as its Librarian. Mrs
Kate, who was Polish, taught foreign languages to the
Institute students, and their daughter Lalitha later
became Harish-Chandra’s wife. Even now each yeat the
Students’ Gymkhana at the Institute organizes a Kale
Memorial Table Tennis Tournament, and one cannot
help thinking that if the connection to Harish-Chandra
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were better known, more mathematics students and
faculty might participate and feel the better for it!

Harish-Chandra’s work with Bhabha at Bangalore was
largely inspired by some ideas of Dirac'* in his paper
‘Classical Theory of Radiating Electrons’ published in
1938. Here Dirac had succeeded in  obtain-
Ing an equation of motion for the classicatl structureless
point electron based only on relativistic covariance and
thhe fundamental conservation laws of energy and
momentum. In this context he introduced the rather
novel ‘half advanced plus half retarded’ solutions of
Maxwell's equations, and reproduced the radiation
reaction terms of classical electrodynamics. His aim was
to try to put the classical theory on as sound a basis as
possible, before going on to tackle the divergences of
the quantum theory. On the way to deriving the so-
called Divac—Lorentz equation, he even brought in the
concept of mass-renormatization, aiready at the classical
level. In their work, Harish-Chandra and DBhabha
extended Dirac’s results by considering also the effects
of nontrivial internal structure for the classical
relatyvistic particle, and the consequences of conserva-
tion of relativistic angular momentum!'3. Dirac’s ideas
were pursued not only at Bangalore but also by Wheeler
and Feynman at Princeton; but ultimately they could not
be pushed as far as Dirac might have hoped.

Around 1945 both RBhabha and K. S. Krishnan
recommended Harish-Chandra to Dirac for further work
at Cambridge. About this time Dirac had just completed
his theory of expansors recounted earlier, so it was quite
natural for him to suggest that Harish-Chandra examine
the general problem of constructing infinite irreducible
representations of the Lorentz group, determine which
ones were unitary. and so on. In particular, Dirac asked
Harish-Chandra to find the half integral spin analogue to
expansors.

In the period he spent at Cambridge, up to about 1947,
Harish-Chandra succeeded in doing all this and more'4.
He first used Lie algebraic methods to show that any IR
of the group S1(2, C) is determined by a pair {j,, 4},
where jq is the lowest ‘spin’ (smallest UIR of SU(2))
present, and x is a camplex number. {(The notations are
slightly different from those in Harish-Chandra’s paper.)
HMe originally assumed (and subsequently proved) that
the ‘spin spectrum’ in the /R {j,, #} consists of the
sequence jo, jo+ 1, jot+2,.. in a multiplicity-free
manner; namely each UIR of SUA2) that is present
occurs just once. The situations when the IR{Jjo, 4}
collapses to a finite dimensional one, when it is unitary
(and so necessarily infinite dimensional), and when
nonunitary infinste dimensional, were all carelully
traced. In all this Harish-Chandra admirably exploited
both the basic commutation relations among the
generators of SH2, ), and the existence of two
independent Casimir invariants which reduce to pure
numbers in any IR, The UIRs were shown by Harish-
Chandra fo come in two f(amilies. which were later
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named the Principal Series and the Supplementary or
Exceptional Series respectivelyl:

1. Principal Series UIRs of S/1(2, C): {j,, u} where
jo=0,1/2,1, ,ureal (20ifj,=0);

2. Supplementary Series UlIRs of Si(2, C): {0, u}.
where Rey =0, 0 <Imu < 1.

In this notation the two UIRs discovered by Majorana
in 1932 are {1/2,0} from the Principal Series and
{0, «/2} from the Supplementary Series.

Following this infinitesimal analysis of the IRs and
UIRs of &§/(2,C), Harish-Chandra proceeded to
construct ‘spinor operators’ with respect to S/(2. C):
these are analogues of two-component spinor operators
at the SU(2) level which can couple any spin j to the
two ‘neighbouring’ spin values j+ 1/2. In the S/(2, C)
case there are two kinds of spinor operators to consider,
belonging {like Weyl fields} to one of the two IRs
(1/2, 0) and (0, 1/2). And such operators can couple a
general IR {j,, 4} to the four ‘neighbouring’ IRs
{jo x 1/2, uxi/2}. In this part of his paper, Harish-
Chandra displays considerable skill and ingenuity in
handling the algebra — one must remember that the so-
calied Racah~Wigner methods for angular momentum in
quantum mechanics were not yet so well-known and
widely used as they are today, and here was Harish-
Chandra essentially extending them (for the case of
spinor operators) to the Lorentz group!

Finally Harish-Chandra turned to the problem posed
by Dirac of finding half integral spin analogues to
expansors. Here he succeeded In achieving several
things. He introduced fumction spaces made up of
functions of components of two-component spinors of
types (1/2, 0), (0, 1/2), having definite complex degrees
of homogeneity with respect to each kind of spinor. and
carrying general IRs of SI(2,C). The concept of
complex degrees of homogeneity was similar in spirit to
Dirac’s analytic continuation of the rank of a tensor; and
the action of S/(2,C) was given directly for finite
elements of the group and not for infinitesimal
transformations alone. Harish-Chandra calied elements
of these function spaces ‘expinors’ — unlike Dirac’s
expansors which are based on faur-vectors and which
provide highly reducible representations and so in a
sense are ‘very bulky’, expinors being based on spinors
are much more ‘primitive’ and ‘lean’; so they
immediately lead to irreducible representations. In the
unitary cases, he also constructed the appropiiate
conserved Iilbert space inner product.

All in all, Harish-Chandra gave a complete and
thorough answer to the problems suggested (0 him by
Dirac. (In their respective papers both Dirac and [Harish-
Chandra attempted to use the ropresentations const-
ructed by them to give new relativistic wave equations,
and il s interesting that on one aspect of the physical
interpretation  Marish-Chandra  clearly  expresses hus
disagreement  with  Dirac.} Around the same tine,
essentially the same work was done both by Gethind and
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Naimark in the (erstwhile) Soviet Union'3, and by
V. Bargmann at Princeton, but the latter’s results re-
mained unpublished. However, Bargmann’s work on the
UIRs of the three dimensional Lorentz group SO(2, 1)
was published and remains a classic — it 1s here that the
famous discrete series unitary representations first made
their appearance'®.

Soon after completing this work at Cambridge, Harish-
Chandra went to Princeton, and then wrote to Dirac to
say that he was concerned at the lack of rigour in his
work. To this Dirac responded: ‘1 am not interested in
proofs but only in what nature does’,

Throughout his life Harish-Chandra retained a great
sense of “awe and reverence’ for Dhrac. Later these were
also ‘mixed with a feeling of gratitude and affection’.
For a volume in honour of Dirac’s eightieth birthday
Harish-Chandra wrote: ‘1 have often pondered over the
roles of knowledge or experience, on the one hand, and
imagination or iatuition, on the other, in the process of
discovery. | believe that there is a certain fundamental
conflict between the two and knowledge, by advocating
caution, tends to inhibit the flight of imagination.
Therefore a certain naivete, unburdened by conventional
wisdom, can sometimes be a positive asset. [ regard
Dirac’s discovery of the relativistic equation of the
electron as a shining example af such a case.’

As is well known, Dirac was a master craftsman in the
art of theoretical physics, creating mathematical tools
apprapriate for his needs with ease and elegance.
Langland’s words on Harish-Chandra'® — ‘... by and
large it is not too much of an exaggeration to say that he
manufactured his own tools as the need arose, and that
one of the grand mathematical theortes of this century
has been constructed with the skills with which one
leaves a course in advanced calculus® — show that in this
respect master and pupil were alike.

—

Subsequent developments in physics have made rather
imited use of the UIRs of the Lorentz group, and their
significance has been greater as the origin of a great and
beautiful chapter in modern mathematics. To Dirac and
Harish-Chandra will always go the credit for having

jointly initiated this development.

|. For very readable accounts, see Gelfand, I M, Minios, R A
and Ya Shapiro, Z , Representations of the Rotation and Loreni:
Groups and thewr Applications, Macmitlan, New York, 1963,
Naimark, M A | Linear Representations of the Loreniz Group
Macmitlan, New York, 1964, Srimivasa Rao, K N, The Rotation
and Lorentz Groups and their Representations for Physicists,
Wiley Eastern Ltd , Delh:, 1988

2 Ditac, P A. M, Proc. R Soc., 1928, A117, 610, 1928, Al1lS8,
351.

3 Weyl, H, Z Phys, 1929, 56, 330

4 Rarta, W and Schwinger, ) , Phys Rev, 1941, 60, 61

5. Pauli, W, Phys Rev, 1940, 58, 716.

6 Majorana, E., Nuove Cimento, 1932, 9, 335, See also Mukunda,
N, Phys, Rev, 1969, 183, 1486, Sudarshan, E C. G and
Mukunda, N., Phys. Rev, 1970, D1, §76

7 Bargmann, V., Math Rev , 1949, 10, 584

8 Nambu, Y, /nfinite Multiplets, Proceedings of the International

Conference on Particles and Fields, Rochester, 1967 (eds
Hagen, C. R, QGuralmk, G and Mathur, V. S) Wiley-
Interscience, New York, 1967, p 347

9 Dirac, P. A M, Proc. R Soc 1945, A183, 284.

10 Langlands, R. P, ‘Harish-Chandra’, Biggr Mem Fellows R,
Soc 1985, 31, 197,

11 Mukunda, N, Proceedings of the Seminar *Some Current Trends
in Mathematics and Physics — in memorvam Harish-Chandra’,
QOctober 10-13, 1993, Mehta Research Institute of Mathe-
matics and Mathematical Physics, Atiahabad, Inda {to be
published)

12. Dirac, P A M, Proc R Soc, 1938, A167, 148

13 Bhabha, H. ] and Harish-Chandra, Proc. R Soc, 1944 A183,
134, 1946, A18S, 250

14 Harnish-Chandra, Proc R. Soc., 1947, A189, 372

1S. Gelfand, I M and Namark, M A, /zv Akad Nauk SSSR,
{947, 11,411

16 Bargmann, V., dnrn Math , 1947, 48, 568

940

CURRENT SCIENCE, VOL. 65, NO 12, 25 DECEMBER 1993



