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Report on Fermat’s Last Theorem

V. Kumar Murty

Fermat's Last Theorem is the assertion that for any integer n > 2 there are no non-zero infegers
x, y. z such that x" +y" =z". Attempts to prove it over the last three and a half centuries have
resulted in the formulation of many deep concepts, tools and techniques. Recent developments on
Fermat’s Last Theorem have brought these concepts together in a spectacular fashion. In this
article, we attempt to describe some of these ideas in general terms, so as to convey a flavour of
the subject.

A question studied by the ancients is to find all solutions By writing the equation of the line, it is easy to check
in integers of the equation that ug and vy are rational numbers if and only if ¢ is
+ rational. Thus, the rational solutions of (2) are in one-to-

X +Yi=22 (1) one correspondence with the rational values of ¢ and in

For example (3, 4, 5), (5, 12, 13) are solutions. One way  fact are given by

of producing infinitely many solutions is to take y =0

and x = =, But we shall consider these to be degenerate 2t 12 -1
and the problem is to find all non-degenerate solutions T v= 241
(that is, triples of integers (x, y, z) satisfying (1) and

with xyz # 0). At first sight, this seems to be a problem  where 7 is rational.

in number theory, but it is most easily solved from a The saga of Fermat’s last theorem begins with the
geometric point of view. In the first place, it is enough  consideration of the cubic analogue of (1). The problem
to find all solutions of is to find all solutions in integers of

w+ =1 2) xX3+y’=23 (3)

with u, v rational numbers, for then we could clear the  Once again, we are looking for non-degenerate

denominator to get an integral solution of (1). Equation  solutions. If we attempt to mimic the approach used
(2) defines the unit circle. Given a point (1o, Vo) on it, above, we are led to consider rational points on the
consider the line through (g, vg) and (0, 1) and let ¢ be  cubic curve

the point where it intersects the u-axis.

V v

(0.1}

’. i

S . _——

W+ v =1, (4)

e . _—
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parametrize the points on the curve using points on a

fixed line. To solve (4) (or equivalently (3)) requires
more arithmetic insight.

It was Gauss who first showed that (3) has no non-
degenerate solutions. In essence, the idea is to factorize
the left-hand side. Let { = exp(2ni/3) be a third root of
unity. Then (3) is the same as

X+ Y)X+LY)YWX+Eyy=2, (5)

If { had been an ordinary integer, we might have
proceeded as follows: The three factors on the left are
essentially relatively prime (that is, have no common
divisors) and so if their product 1s a cube, then each
factor itself must be a cube. This follows from the
unique factorization property of the integers. Gauss
developed the ‘arithmetic’ of the field Q({ ) to an extent
where this calculation still makes sense and thus, he
could conclude that a solution (x, y, z) of (5) satisfies

3

xXty=u
x+ly=v
x + Czy:w3.

Now rearranging these equations and using the fact
that 1 + ¢+ =0, one deduces that there is a new
solution

2+ b=
with max (|a| 18], |cl)<max(|x| Ayl, 12]). More-
over, if we begin with a non-degenerate solution
(x, ¥, z), we again get a non-degenerate solution (a, b, ¢).
Thus, repeating this procedure eventually produces a
contradiction and shows that (3) has no non-degenerate
solution.

It is interesting to note that if we alter the equation
shightly to

X+v+2Z+w*=0

then we do find non-trivial solutions. Indeed
33+4°+5°+(~6)’= 0. Another solution was discovered by
Ramanujan, namely (12, 1, -10, -9). Ramanujan
observed that this solution gives the smallest number
which can be expressed as a sum of two cubes in two
different ways, namely 1729 = 12 + 12 = 10> + 9°, Later
he found infinitely many solutions. In 1988, Elkies and
Zagier independently discovered a solution of
X4+ Y*+Z*—w*=0, namely (2682440, 15365639,
18796760, 20615673).

In 1637, the lawyer and amateur mathematician Pierre
de Fermat obtained a copy of a translation of the Greek
work by Diophantus. He read the description of the
solutions of (1). Fermat asked himself the question
whether

X"+yYy"=2" (6)
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has any non-degenerate solutions. Apparently, he
convinced himself that for » > 2 it did not and he made a
marginal note to this effect. This part of the story is too
well-documented to warrant elaboration here.

After Fermat’s death, his marginal note was dis-
covered and when attempts at reconstructing his
marvelous proof failed, the problem acquired some
notoriety. Fermat made many assertions without proof.
Some of them have subsequently been proved correct
and others have been shown to be false. This marginal

note is the only (known) remaining assertion that has yet
to be proved or disproved, hence the epithet Fermat’s
last theorem.

It 1s, at least at first glance, rather surprising that the
problem should have attracted as much attention and
interest as it has from the public, both mathematical and
non-mathematical. It is important to consider this pheno-
menon as it bears on the very foundation of scientific
discovery and on the public perception of science.

The word “‘science’ comes from the Latin verb
‘scindere’ which means to dissect or to take apart for the
purpose of analysis. It refers, therefore, not so much to a
body of knowledge as to an approach to knowledge
itscif. By observation of phenomena, science seeks to
discover the principle which underlies them.

The use of the word discovery is deliberate: it is
indicative of a feeling shared by many thinkers that
there_is a hidden structure or underlying harmony in
nature. We do not invent it; we can only try to reveal it
and describe it. Philosophy goes further and speaks of
a ‘harmony of harmonies’ that is so all-encompassing
that it is beyond description. But science deals with
the describable, and mathematics is the language of
science.

As we make language more precise, the field of ideas
which can be described in that language becomes
narrower. Science has chosen precision and accepted
this limitation of field, and the most precise of
languages is mathematics. However, even here, we
should not forget that it is not a machine that does
science or mathematics, but the human being. The
infinite vista of the human mind peers through from
behind the most immaculate and imposing mathematical
formula. The finite and known always points to the
infinite and the unknown and in this sense, knowledge 1s
infinite. A formula may be the end of one discovery, but
it is also the beginning of a new investigation. It 1s this
that makes mathematical discovery possible.

Mathematical discoveries are the discoveries of new
concepts and their relationships. How does one go about
making such discoveries? ‘There 1s no royal road to
geometry.” The only way is by patient and careful study.
Even Ramanujan worked through 5000 problems to
awaken his skill and insight.

A mathematical mind is awake to problems which
might suggest themselves. Thus it is not unreasonable or
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very surprising that Fermat should have asked himself
about (6) atier reading a discussion of (1),

In June 1993, ncwspapers around the world flashed the
headline that the 350-yvear old Fermat problem had been
solved Protessienals and amateurs alike were glued to
their computers to read the latest postings on the
electronic mail networks. And  perhaps somewhat
surprisingly, the ‘man on the street’ wanted to know the
latest on Fermat. Why?

Partlv. it is an awe of technological and scientific
achievements, an awe that has been instilled in us by the
astounding and apparently miraculous successes in these
fields. But the interest shown raises the sertous question
of how science and mathematics are perceived by the
public. To many. these subjects are seen as lying within
some mpenetrable fortress or in an ivory tower,
surrocunded by an air of incomprehensible mystery. The
people within this fortress are viewed as living In a
world of their own, speaking to each other in some
stranve language and out of touch with the reality of the
world outside.

Scientists themselves have contributed to this view by
failing to reach out to the public. This state of affairs 1s
unfortunate and even dangerous, as any communication
oap is dangerous. The great library of Alexandria, the
Institute for Advanced Study of ancient times, was burnt
to the ground by a frenzied crowd unable to understand
the work being done there and enraged at the apparently
privileged life of the scholars. The health of scientific
activity depends on our bridging the gulf of under-
standing to the public.

Both technology and fundamental research serve
society and play an important role in it. Moreover they
are human activities and enrich the human experience.
As music can be appreciated even by those who are not
musicians, so can mathematics be appreciated. If science
is portrayed as the artistic and creative experience which
it is, it will be more accessible t0 the public.

To return to our narrative, Kummer tried to approach
Fermat's last theorem by generalizing the approach of
Gauss of n=3. One observes In the first place that 1t
suffices to consider the case when m=p is prime.
Kummer developed the arithmetic of the field Q(C,)
where {, is a primitive pth root of 1. Assuming that
unique factorization held in it, he could show that

XP+yr=2° (7)

has no non-degenerate solutions by following the same
line of attack as in the case p = 3.

Unfortunately, unique factorization does not hold in
this field in general. One can measure how far it
deviates by a group called the ideal class group. A
fundamental theorem of algebraic number theory is that
the class group is finite. Let us denote its order by 4,.
What Kummer proved is that if 4, = 1 (or even if p does
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not divide 4,) then (7) has no non-degenerate solutions.
The condition h,=1 can be interpreted Galois-
theoretically using class field theory.

Denote by @ an algebraic closure of Q Then, it is
equivalent to asserting that any homomorphism

x:Gal(Q/Q(§,) —» CH X =1

is ramified somewhere. Equivalently, any extension field
L/Q(L,) is ramified somewhere. Summarizing, Kummer
showed that if (7) has a non-degenerate solution, then
there exist a y and an L which are unramified every-
where.

Since it is possible to construct such % and L,
Kummer’s approach did not prove that (7) has no non-
degenerate solutions. Many years later, Frey re-
examined the problem and asked whether it would be
possible to construct two-dimensional Galols represen-
tations with restricted ramification starting from a
solution to (7). He made two modifications: he consi-
dered representations of Gal(Q/Q) and he replaced C
with a finite field. Thus, he was looking for homomor-
phisms

o Gal(@/@) — GL, (Z/ p).

As soon as this is written, it at once suggests elliptic
CUrves.

What is an elliptic curve? Let us return to Diophantus
and the equation (1). The procedure we used to solve it
will work if we replace the circle with any conic section.
So in the program of ‘solving all diophantine equations’,
that is, all equations of the form

F(X],...,Xn) = {)

where F is a polynomial with rational coefficients in »-
variables, the next step is curves which are not conics
and the ‘simplest’ of these are elliptic curves.
Topologically, if rational curves look like a plane,
elliptic curves are tori, that is, doughnut-shaped. More
specifically, over the complex numbers C, an elli-
ptic curve is given by (/L where L=Zw @ Zw, i3
a lattice in C. Algebraically, an elliptic curve over say a
field K of characteristic zero can be given by an
equation
E:y'=x>+ax+b, a,be K.
where the cubic on the right has distinct roots.
The connection between the two descriptions is given

by the Weierstrass P -function. Indeed, given the lattice
L, let us set

1 1 |
P(z)= — + - :
z? meZ\'m} ((Z -w)* W’ )

CURRENT SCIENCE, VOL 67, NO 2, 25 JULY 1994




Then 7P satisfies P(z+ w)y=P(z) for any we L.
Moreover, we have the algebraic relation

(P )Y =4P°-g, P —gs,

where g,=60Zw™* and g3;=140 Xw® where the
summation is over w e L\{0}.

The curve E has several numerical invariants attached
to it. The first is the discriminant

A=Ag=16(4a’ —27b%) # 0.

If e;, e3, e3 are the roots of the cubic,

A=(e;—e) (ey—e3) (e2~&3)%

There is also the j-invariant
j=jg=*alA,

where * is an explicit, but (for us) unimportant,
constant. The value of jr is unchanged if F is replaced
by an isomorphic curve, whereas Ag depends on the
choice of model. Besides j and A, there is a subtler
invariant ¥ = Ny called the conductor of E. It is more
technical to define.

One new structure that appears in the case of elliptic

curves is that it is possible to define a group law @ on
the points.

<
-,

The identity O is the point at infinity. The group law
1s determined by requiring that

POOBOR=0

if the three points P, O, R lie on a straight line, If we are
given the coordinates of P and Q, it is clear that we
can determine the coordinates of R using rational
functions.

Now suppose that p is an odd prime, A4, B, Ce Z,
ABC #0,(A, B, C)=1 and that

AP+ B =(F
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In other words, suppose we had a non-degenerate

solution (4, B, C) to the Fermat equation of degree p.
Consider

E:y* =x(x + AP) (x — BP).

This is not quite in the (Weierstrass) form described

above, but can easily be put in that form. When one does
s0, one finds that

Ar = (ABC ).

The curve E is semistable in the following sense.

Consider the curves
<
Eyv y=x

These 7 re not elliptic curves, but degenerate versions
where two or three of the roots of the cubic coincide (so
A = 0). The first is called a nodal curve and the second a
cuspidal curve.

In number theory, it is often easier to study equations
modulo a varying prime /. Given £ we may consider it
modulo / (that is, view 1t as a curve defined over the
finite field Z/1). If 0, A”, —BP stay distinct modulo /, then
we still get an elliptic curve. But if / divides 4° or B? or
A? + BP then we get a nodal or cuspidal curve. In fact,
we cannot get a cuspidal curve for that would require !/
to divide 4, B and C and we had assumed (without loss
of generality) that (4, B, C) = 1. This is the meaning of
E being semistable: for any prime [/ the reduction of E
modulo / is either an elliptic curve or a nodal curve.

Knowing that an elliptic curve has semistable
reduction everywhere has Galois-theoretic implications.
So let E be any such curve defined over Q. For a prime
[, we consider

E{ll={(x,yye E,x,ye C:!-(x,y) =0}
(Here
-(x,5) = (£,)® -+ ®(x,9) ).

e e e e e
{ imes

Eo. ' =x (x + 1)

The set Ef/} is an Abelian group and in fact
Ell=Z/l ® Z/l. Moreover x, y must lie in Q, and if
oe Gal(Q/Q), then (o(x), o(y)) is again in E[/].
Moreover, if (x, y), (4, v) € E[I] then (s, ) =(x, y) ®
(u, v) € E[l]) and (a(s), o (1)) =(o{x), o () ® (o(w),
o (v)). Thus, we get a representation

p: Gal(Q/Q) — Aut(E[/]) = GL, (Z/]).

This homomorphism factors through a finite quotient,
so in fact we get an extension ficld K; (say) of finite
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degree over Q. Thys ficid 1s obtamned by adjoining to Q
the coordmates of 2l powmnts i E£f/] and 1t s the fined
tieid of the kernel ot o0 A theeorem of Tate tells us that if
£ s semiustable. then A, G s untamified at any odd
prime g = { with nunto, (4, ) 0) =0 (mod /) Applying
it to the elliptic curve we got from a solution to Fermat,
one deduces the todlowmng A, s unramificd at all
primes /22, p. Motcover, mun{u,{ /5 ). 0) = 0 (mod p).
Thus we have achioved our imtal objective. Siarting
from a solution to Fermat. we have produced an
extension field wh b hay himted ramification and we
obtamned this extor~icn from points of finite order on a
certam elliptic cuive

We remark that tor 4 senistabie curve £, we have for
any prime /

(AL )= —runty, (7 0)

and so the aboy ¢ condition may be written as
¢ (D) =0 ¢mod p).

Moreover. the conductor ¥V, is given by

I1:

r-f{J: ,‘:,. L

1\'.; -—

Using this, one c¢an deduce a kind of converse 10 the
construction ¢of E. Indeed, Frey showed that for p > S,
the following are equivalent:

(a) there is a non-degenerate solution of X7+ Y7 =Z7
(b) there is a semistable ¢lliptic curve E defined over Q
such that

(1) QEE2D) =Q
(i1) Q(E] »)) is unramified outside 2p
(1) v {AL) =0 (mod p). v2(Ar) = 8 (mod p).

Frey’s result (which built on earlier work of
Hellegouarch) was a very significant turning point. For
the first time, 1t showed clearly that Fermat's last
theorem was equivalent 1o a problem in the theory of
elliptic curves. Now the search was on for a method to
show that curves satisfying (b) do not exist.

One way of doing this is to find a list of al/ elliptic
curves over @ and check that the Frey curves are not
there. So next, one looks for a parametrization of all
elliptic curves over Q. Taniyama found some elliptic
curves “In nature’. Start with the upper half plane

= {zeC: Im = > 0}.

SL.(R) acts on 83 by fractional linear transformations:

a b ?=a:+b
¢ d}° cz+d’

{Here SL,(R) denotes 2 x 2 matrices with real entries
and having determinant equal to 1.) To each elliptic

86

curve £ over the complex numbers, we can associate a
point €M lndeed, write £ = C/L with L = Z(U] &, Za)z,

and Im(w)/w») > 0. Then we map

Er— ﬂ.}'yfa}g_.

If £, and £, are isomotrphic and correspond to =z,

-, € 8. then there is an element vy € SL>(Z) such that
vy>; = 2. So in a natural way, the quotient (or orbit)

space SL-(Z)\$ parametrizes isomorphism classes of

¢lltptic curves.
We may also consider subgroups

FU(N)z{(: z]=g€SL2(Z):gE(O *}modN}.

Then the orbit space I'p (VN )\ can be shown to be a
parameter space for isomorphism classes of pairs
(E, Cy). E an ¢lliptic curve and Cy a cyclic subgroup of
order N. So when we are interested In ‘enumerating’
elliptic curves, it is natural to constider these parameter
spaces.

These spaces are open Riemann surfaces and they can
be compactified by adding a finite number of points. It
is a fundamental result of Shimura that the resulting
compact Riemann surfaces are algebraic curves having a
model (that is, a defining equation), denoted Xy (N),
which is defined over Q.

These curves have many interesting properties. In
particular, they have many ‘correspondences’ which can
be used to decompose the Jacobian variety

Jac (Xo(N)) ~A; x --- X A,.

The A, are Abelian varieties (as is Jac (Xo(N))) and ~
denotes isogeny. (An Abelian variety is a higher
dimensional generalization of an elliptic curve. If 4, and
A, are Abelian varieties, a morphism ¢: A, > Ay Is
called an isogeny if ker ¢ is finite.) If dim 4, =1, we say
that it is a modular elliptic curve. As 1 said, they appear
in nature. The ‘smallest’ example is Xp{(11) which is
itself an elliptic curve. It is given by the equation
y2+y:x3 ~ x*. (The problem of finding equations for
modular curves is an old one and it is continuing to
attract attention even now.)

There are several equivalent ways of defining a
modular elliptic curve. One is to say that £ is modular if
for some N there 1s a non-constant map

The conjecture of Taniyama-Shimura is that any elliptic
curve defined over Q is modular.

On the one hand, given a modular elliptic curve E, we
can choose a prime p and associate a Galois representa-
tion

p: Gal (Q/Q) - Aut E [ p] = GL, (Z/p).
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On the other hand, given such a representation p, we can
try to see If it comes from a modular elliptic curve. A
given p may not arise from an elliptic curve, or it may
arise from many different elliptic curves i.e. p does not
determine £.

There are several pieces of data involved here:

(a) the ramification of p: as we saw, if p comes fiom a
solution to the Fermat equation of degree p, it has very
restricted ramification properties, namely it is unrami-
fied outside 2p and v, (Ax) = 0 (mod p).

(b) if p arises from an elliptic curve E, we can consider
its conductor N. If E is modular, it is a result of Carayol
that E is of level N, i.e. occurs in Jac( Xy (N )).

A fundamental conjecture of Serre asserts a relation-
ship between these two pieces of information. Namely,
if £ is modular of level IM, [ tM and p is ‘finite’ at /,
then there is another modular elliptic curve £° (or more
generally, a modular form f) of level M which also
gives rise to p. The condition of being ‘finite’ at / 1s
satisfied if p is unramified at /. For semistable curves. it
is also satisfied if v, (Ar) =0 (mod p).

The Taniyama-Shimura conjecture and Serre’s
conjecture together imply Fermat’s Last Theorem.
Indeed, starting with a solution (a. 4, ¢) to F),, construct
E and p. By Taniyama-Shimura, £ is modular. We know
that £ has conductor

N=T]s

{1 abe

as £ is semistable. Note that N is squarefree (that is, it is
not divisible by the square of any prime). By Carayol’s
result. £ occurs in Jac(Xp (N )). Since p is “finite’ at any
[IN,1#2. Serre’s conjecture implies that there must be
a modular form f of level 2 giving rise to p. But
Jac (X (2)) = 0 (as Xp (2) has genus zero) so f does not
exist.

In 1987, K. Ribet proved Serre’s conjecture thereby
showing that the Taniyama-Shimura conjecture implies
Fermat’s last theorem. The work announced by Wiles in
June 1993 claimed to prove the Taniyama-Shimura
conjecture for all semistable elliptic curves. By our dis-
cussion above, this would be enough to imply Fermat’s
Jast theorem. However at present, there seems to be a
gap in the argument. This was spotted by one of the
referees selected to study the manuscript. Wiles’ manu-
script was never released to the mathematical public and
was only made available to a small group of experts.
The e-mail networks, however, were kept buzzing with
every small piece of information that leaked out and it
was especially news of the *gap’ which provided most of
the grist for the rumour mills.

To clanfy the sitvation, on 4 December 1993,
Wiles posted the following message on the network
sci.math
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In view of the speculation on the status of my work on the

Taniyama-Shimura conjecture and Fermat’s Last Theorem |

will give a brief account of the siuation Duaring the review
ptocess a numbcer of problems emerged. most of which have
been resolved. but one m particular I have not yet settled. The
key teduction of (most cases of ) the Tantvama-Shimura
conjecture to the calculation of the Selmer group is cosrect.
Howcver, the final calculation of a precise upper bound for
the Scliner gioup 1n the semistable case (of the symmetric
square representation assoctated to a modular form) is not yet
complete as it stands. 1 believe thal 1 will be able to finish this
in the near futuie using the ideas eaplamed in my Cambridge
lectures.

The fact that a lot of work remains to be done on the
manuscript makes if stilt unsuitable for release as a preprint.
In my coursc iy Princeton beginning in February | will give a
full account of this work.

Andrew Wiles

In fact Wiles has now begun lecturing on s work. It
should be pointed out that there seems to be agreement
that Wiles has proved infinitely many new cases of the
Taniyama-Shimura conjecture.

We shall close this article by briefly discussing two of
the key techntiques m Wiles” argument, namely Seimer
oroups and deformations of Galorts representations.

Given as elliptic curve E defined over Q. and a prime
I, we have already seen that tacre 1s an associated
representation

D.Gal(Q/Q) - Aut E {11 = GLo(Z/1).

In fact, this is the reduction mod [ of a representation

p: Gal (Q/Q) — GLy(Z)),

where Z; denotes the ring of /-adic integers. Indeed, this
representation arises by consideting not just E[/], but
simultaneously all E{/']. n= 1, 2, .... Though p does
not determine E, it is a theorem of Faltings that p does
(at least up to 1sogeny).

On the other hand, we may consider afl representa-
tions into a local ring O of residue tield Z//

p. Gal (Q/Q) — GL, (O)

whose reduction mod / 1s isemurphic 1o @. Such a p s
called a deformation of p and the problem of classity-
ing the deformations of a given 7 has been studied
extensively by Mazur and others. Actually, to make the
problem meaningful, furither conditions have to be
imposed on p and p.

One way of constructing rcpresentations p is from
modular forms. A modular dcformution of p 1s a
deformation p which ariscs from a modalar form. A
conjecture of Mazur and Fontaine asserts that under
certain assumptions on P (having to do with ramifi-
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cation and behaviour on certain decomposition groups)
every deformation is modular. The bulk of Wiles’
arcument is to prove that if there exists one modular
deformation, then all deformations are modular, that is,

the Mazur-Fontaine conjecture holds.

Let us briefly consider Wiles’ approach to proving
this result. Mazur proved that there exists a ring R and a
universal representation

p: Gal (Q/Q) = GL; (R)

such that any deformation p arises by composing p with
a morphism R - Q. There is also a ring T and a
universal modular representation (that is a repre-
sentation A such that any modular representation factors
through A). There is a surjective morphism ¢@: R — T
and we want to prove that R = T. Wiles reduces this to a
local computation. We are given one modular lift so that
it corresponds to a morphism 7. T — Z;. Let 2+ denote
its kernel. Let P denote the kernel of the composition
R—> T-> Z,. The cotangent space to the deforma-
tion space at the point given by n is Px/ 2! and in
the modular deformation space it is Pr/2?. The
map ¢: R — T gives a map

P:Pr! Pf S PriP2.

Wiles uses commutative algebra to show that if T is a
local complete intersection and ¢ is an isomorphism

then R=T.
The ring T 1s shown to be Gorenstein which means
that

T'=Hom, (T, Z,).

Thus, associated to m T— Z; there is an element ne Z
so that the composition of the natural map Z;, > T with &t
is multiplication by 7. Wiles uses Fitting ideals to show
that

,py'/ﬂf ' > )Z;/?}'.

Hence, the problem s to show that T is a local complete
intersection and that

ngf ;;RZ l < lzﬂ!n‘

To do this, he interprets Px/ 27 as an analogue of a

Selmer group. In recent years, work of Kolyvagin has
shed new light on the problem of estimating the size of
components of the Selmer group. Wiles tries to adapt
these methods and recent work of M. Flach to prove the
required bound. To do this, he has to construct a certain

g8

distinguished family of cohomology classes (called an
Euler system) in a dual Selmer group. It is in this
construction that the above mentioned gap occurs.

Assuming that this gap can be filled, one still needs
one modular lifting in order to be able to apply the
theorem. An amazing aspect of Wiles’ theory is that one
needs a modular lift for only one prime /. Wiles chooses
! =3 where the sought-for modular lLift was proved to
exist by a theorem of Langlands and Tunnell.

It is hoped that even this brief description of Wiles’
work conveys a sense of the grand unification of ideas

that it embodies.
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